These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33120959)

  • 21. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding.
    Dwivedi A; Groll H; Beckerle P
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study.
    Laffont I; Biard N; Chalubert G; Delahoche L; Marhic B; Boyer FC; Leroux C
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1740-8. PubMed ID: 19801065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics.
    Cognolato M; Gijsberts A; Gregori V; Saetta G; Giacomino K; Hager AM; Gigli A; Faccio D; Tiengo C; Bassetto F; Caputo B; Brugger P; Atzori M; Müller H
    Sci Data; 2020 Feb; 7(1):43. PubMed ID: 32041965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trajectory Control-An Effective Strategy for Controlling Multi-DOF Upper Limb Prosthetic Devices.
    Gloumakov Y; Bimbo J; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():420-430. PubMed ID: 35171774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss.
    Mohammadi A; Lavranos J; Tan Y; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3310-3313. PubMed ID: 33018712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intention Detection Strategies for Robotic Upper-Limb Orthoses: A Scoping Review Considering Usability, Daily Life Application, and User Evaluation.
    Gantenbein J; Dittli J; Meyer JT; Gassert R; Lambercy O
    Front Neurorobot; 2022; 16():815693. PubMed ID: 35264940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses.
    Markovic M; Dosen S; Cipriani C; Popovic D; Farina D
    J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.
    Gonzalez-Vargas J; Dosen S; Amsuess S; Yu W; Farina D
    PLoS One; 2015; 10(6):e0127528. PubMed ID: 26069961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of variable transmission on body-powered prosthetic grasping.
    Abbott ME; McPherson AIW; Torres WO; Adachi K; Stuart HS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective Multi-Mode Grasping Assistance Control of a Soft Hand Exoskeleton Using Force Myography.
    Islam MRU; Bai S
    Front Robot AI; 2020; 7():567491. PubMed ID: 33501329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliable Vision-Based Grasping Target Recognition for Upper Limb Prostheses.
    Zhong B; Huang H; Lobaton E
    IEEE Trans Cybern; 2022 Mar; 52(3):1750-1762. PubMed ID: 32520717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.