These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33121010)

  • 21. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking.
    Wang Y; Yang L; Hou J; Zou Q; Gao Q; Yao W; Yao Q; Zhang J
    J Biomol Struct Dyn; 2019 Feb; 37(3):649-670. PubMed ID: 29380672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of a virtual mirror-image library of natural products.
    Noguchi T; Oishi S; Honda K; Kondoh Y; Saito T; Ohno H; Osada H; Fujii N
    Chem Commun (Camb); 2016 Jun; 52(49):7653-6. PubMed ID: 27198617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of a natural product inhibitor targeting protein neddylation by structure-based virtual screening.
    Zhong HJ; Ma VP; Cheng Z; Chan DS; He HZ; Leung KH; Ma DL; Leung CH
    Biochimie; 2012 Nov; 94(11):2457-60. PubMed ID: 22709868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling: Method and robustness evaluation.
    Magonov J; Maier J; Erath J; Sunnegårdh J; Fournié E; Stierstorfer K; Kachelrieß M
    Med Phys; 2024 Mar; 51(3):1597-1616. PubMed ID: 38227833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Novel Drug-like Molecules Using Informatics Rich Secondary Metabolites Analysis of Indian Medicinal and Aromatic Plants.
    Karade D; Vijayasarathi D; Kadoo N; Vyas R; Ingle PK; Karthikeyan M
    Comb Chem High Throughput Screen; 2020; 23(10):1113-1131. PubMed ID: 32504496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents.
    Najmi A; Javed SA; Al Bratty M; Alhazmi HA
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Nuisance Substructures and Aggregators in a Comprehensive Database of Food Chemical Compounds.
    Kaya I; Colmenarejo G
    J Agric Food Chem; 2020 Aug; 68(33):8812-8824. PubMed ID: 32687707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting biochemical and physiological effects of natural products from molecular structures using machine learning.
    Jeon J; Kang S; Kim HU
    Nat Prod Rep; 2021 Nov; 38(11):1954-1966. PubMed ID: 34047331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure Revision of Penipacids A-E Reveals a Putative New Cryptic Natural Product,
    Khalil ZG; Kankanamge S; Capon RJ
    Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concise syntheses of the natural products (+)-sylvaticin and (+)-cis-sylvaticin.
    Donohoe TJ; Harris RM; Williams O; Hargaden GC; Burrows J; Parker J
    J Am Chem Soc; 2009 Sep; 131(35):12854-61. PubMed ID: 19673528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational screening of peroxisome proliferator-activated receptor-γ agonists from natural products: potential therapeutics for heart failure.
    Chen R; Wan J; Song J; Qian Y; Liu Y; Gu S
    Pharm Biol; 2017 Dec; 55(1):503-509. PubMed ID: 27937122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STarFish: A Stacked Ensemble Target Fishing Approach and its Application to Natural Products.
    Cockroft NT; Cheng X; Fuchs JR
    J Chem Inf Model; 2019 Nov; 59(11):4906-4920. PubMed ID: 31589422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Natural-Product-Inspired Multitarget Ligands by Machine Learning.
    Grisoni F; Merk D; Friedrich L; Schneider G
    ChemMedChem; 2019 Jun; 14(12):1129-1134. PubMed ID: 30973672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The re-emergence of natural products for drug discovery in the genomics era.
    Harvey AL; Edrada-Ebel R; Quinn RJ
    Nat Rev Drug Discov; 2015 Feb; 14(2):111-29. PubMed ID: 25614221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of diverse natural products as falcipain-2 inhibitors through structure-based virtual screening.
    Wang L; Zhang S; Zhu J; Zhu L; Liu X; Shan L; Huang J; Zhang W; Li H
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1261-4. PubMed ID: 24530004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MedPServer: A database for identification of therapeutic targets and novel leads pertaining to natural products.
    Potshangbam AM; Polavarapu R; Rathore RS; Naresh D; Prabhu NP; Potshangbam N; Kumar P; Vindal V
    Chem Biol Drug Des; 2019 Apr; 93(4):438-446. PubMed ID: 30381914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual Screening Meets Deep Learning.
    Pérez-Sianes J; Pérez-Sánchez H; Díaz F
    Curr Comput Aided Drug Des; 2019; 15(1):6-28. PubMed ID: 30338743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of natural-product-derived inhibitors of 5-lipoxygenase activity by ligand-based virtual screening.
    Franke L; Schwarz O; Müller-Kuhrt L; Hoernig C; Fischer L; George S; Tanrikulu Y; Schneider P; Werz O; Steinhilber D; Schneider G
    J Med Chem; 2007 May; 50(11):2640-6. PubMed ID: 17461565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR-Based Virtual Screening of Natural Products Database for Identification of Potent Antimalarial Hits.
    Ferreira LT; Borba JVB; Moreira-Filho JT; Rimoldi A; Andrade CH; Costa FTM
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33808643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning, data ramping, and uncertainty estimation for detecting artifacts in large, imbalanced databases of MRI images.
    Pizarro R; Assemlal HE; Jegathambal SKB; Jubault T; Antel S; Arnold D; Shmuel A
    Med Image Anal; 2023 Dec; 90():102942. PubMed ID: 37797482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.