These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33121078)

  • 1. Synthetic Route to Glycosyl β-1C-(phosphino)-phosphonates as Unprecedented Stable Glycosyl Diphosphate Analogs and Their Preliminary Biological Evaluation.
    Bosco M; Paik SJ; Busca P; Moore SEH; Gravier-Pelletier C
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33121078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective synthesis of fluorinated aminoglycosyl phosphonates.
    Bouwman S; Orru RV; Ruijter E
    Org Biomol Chem; 2015 Feb; 13(5):1317-21. PubMed ID: 25491168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biological evaluation of alpha,alpha-difluorobenzylphosphonic acid derivatives as small molecular inhibitors of protein-tyrosine phosphatase 1B.
    Yokomatsu T; Murano T; Umesue I; Soeda S; Shimeno H; Shibuya S
    Bioorg Med Chem Lett; 1999 Feb; 9(4):529-32. PubMed ID: 10098656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonate and bisphosphonate analogues of farnesyl pyrophosphate as potential inhibitors of farnesyl protein transferase.
    Holstein SA; Cermak DM; Wiemer DF; Lewis K; Hohl RJ
    Bioorg Med Chem; 1998 Jun; 6(6):687-94. PubMed ID: 9681134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral preference of cutinase in the reaction with phosphonate inhibitors.
    Mannesse ML; de Haas GH; van der Hijden HT; Egmond MR; Verheij HM
    Biochem Soc Trans; 1997 Feb; 25(1):165-70. PubMed ID: 9056864
    [No Abstract]   [Full Text] [Related]  

  • 6. Direct aqueous synthesis of non-protected glycosyl sulfoxides; weak inhibitory activity against glycosidases.
    Alexander SR; Watson AJ; Fairbanks AJ
    Carbohydr Res; 2015 Sep; 413():123-8. PubMed ID: 26125536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminophosphonic acids and derivatives. Synthesis and biological applications.
    Orsini F; Sello G; Sisti M
    Curr Med Chem; 2010; 17(3):264-89. PubMed ID: 20214568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural-based design and synthesis of novel 9-deazaguanine derivatives having a phosphate mimic as multi-substrate analogue inhibitors for mammalian PNPs.
    Hikishima S; Hashimoto M; Magnowska L; Bzowska A; Yokomatsu T
    Bioorg Med Chem; 2010 Mar; 18(6):2275-2284. PubMed ID: 20189401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-Promoted Cross-Coupling Reactions for the Synthesis of Aryl(difluoromethyl)phosphonates Using Trimethylsilyl(difluoromethyl)phosphonate.
    Komoda K; Iwamoto R; Kasumi M; Amii H
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-Bromophosphonate analogs of glucose-6-phosphate are inhibitors of glucose-6-phosphatase.
    Downey AM; Cairo CW
    Carbohydr Res; 2013 Nov; 381():123-32. PubMed ID: 24095944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.
    Kim IH; Park YK; Nishiwaki H; Hammock BD; Nishi K
    Bioorg Med Chem; 2015 Nov; 23(22):7199-210. PubMed ID: 26507430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of [difluoro-(3-alkenylphenyl)-methyl]-phosphonic acids on non-crosslinked polystyrene and their evaluation as inhibitors of PTP1B.
    Hum G; Lee J; Taylor SD
    Bioorg Med Chem Lett; 2002 Dec; 12(23):3471-4. PubMed ID: 12419386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Venturing beyond Donor-Controlled Glycosylation: New Perspectives toward Anomeric Selectivity.
    Leng WL; Yao H; He JX; Liu XW
    Acc Chem Res; 2018 Mar; 51(3):628-639. PubMed ID: 29469568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT.
    Coxon FP; Joachimiak L; Najumudeen AK; Breen G; Gmach J; Oetken-Lindholm C; Way R; Dunford JE; Abankwa D; Błażewska KM
    Eur J Med Chem; 2014 Sep; 84():77-89. PubMed ID: 25016230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Synthesis of phosphonic acid and phosphinic acid derivatives for development of biologically active compounds].
    Shibuya S
    Yakugaku Zasshi; 2004 Nov; 124(11):725-49. PubMed ID: 15516802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospha-Michael addition reaction of maleimides employing N-heterocyclic phosphine-thiourea as a phosphonylation reagent: synthesis of 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonate derivatives.
    Molleti N; Bjornberg C; Kang JY
    Org Biomol Chem; 2016 Dec; 14(45):10695-10704. PubMed ID: 27805222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the synthesis of cyclic 5'-nornucleoside phosphonate analogues.
    Shen GH; Hong JH
    Carbohydr Res; 2018 Jun; 463():47-106. PubMed ID: 29772449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonate monoesters on a thiacalix[4]arene framework as potential inhibitors of protein tyrosine phosphatase 1B.
    Trush VV; Kharchenko SG; Tanchuk VY; Kalchenko VI; Vovk AI
    Org Biomol Chem; 2015 Sep; 13(33):8803-6. PubMed ID: 26205135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indium-mediated allylation of beta-keto phosphonates.
    Ranu BC; Samanta S; Hajra A
    J Org Chem; 2001 Nov; 66(22):7519-21. PubMed ID: 11681972
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases.
    Point V; Malla RK; Diomande S; Martin BP; Delorme V; Carriere F; Canaan S; Rath NP; Spilling CD; Cavalier JF
    J Med Chem; 2012 Nov; 55(22):10204-19. PubMed ID: 23095026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.