BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33121214)

  • 1. Correction: Huang, E.J., and Onnela, J.P. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data.
    Huang EJ; Onnela JP
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data.
    Huang EJ; Yan K; Onnela JP
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer Data.
    Huang EJ; Onnela JP
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke.
    Hou YR; Chiu YL; Chiang SL; Chen HY; Sung WH
    Comput Methods Programs Biomed; 2018 Jul; 161():191-195. PubMed ID: 29852961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement artefact removal from NIRS signal using multi-channel IMU data.
    Siddiquee MR; Marquez JS; Atri R; Ramon R; Perry Mayrand R; Bai O
    Biomed Eng Online; 2018 Sep; 17(1):120. PubMed ID: 30200984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors.
    Liu X; Mei H; Lu H; Kuang H; Ma X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Farina, G.L., et al. A Smartphone Application for Personal Assessments of Body Composition and Phenotyping. Sensors 2016, 16, 2163.
    Farina GL; Spataro F; De Lorenzo A; Lukaski HC
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28241463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single vs. multi-sensor approach to enhanced detection of smartphone placement.
    Guiry JJ; Karr CJ; van de Ven P; Nelson J; Begale M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3691-4. PubMed ID: 25570792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transportation Modes Classification Using Sensors on Smartphones.
    Fang SH; Liao HH; Fei YX; Chen KH; Huang JW; Lu YD; Tsao Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Huang et al. Deep-Learning Based Label-Free Classification of Activated and Inactivated Neutrophils for Rapid Immune State Monitoring.
    Huang X; Jeon H; Liu J; Yao J; Wei M; Han W; Chen J; Sun L; Han J
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a smartphone as a wireless gyroscope platform for quantifying reduced arm swing in hemiplegie gait with machine learning classification by multilayer perceptron neural network.
    LeMoyne R; Mastroianni T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2626-2630. PubMed ID: 28268861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.
    Cerón JD; López DM; Hofmann C
    Stud Health Technol Inform; 2017; 237():115-122. PubMed ID: 28479553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health": Correction to Ben-Zeev et al. (2015).
    Psychiatr Rehabil J; 2015 Dec; 38(4):313. PubMed ID: 26691997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Travel Mode Detection with Varying Smartphone Data Collection Frequencies.
    Shafique MA; Hato E
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction: García-Balboa, J.L., et al. A Field Procedure for the Assessment of the Centring Uncertainty of Geodetic and Surveying Instruments. Sensors 2018, 18, 3187.
    García-Balboa JL; Ruiz-Armenteros AM; Rodríguez-Avi J; Reinoso-Gordo JF; Robledillo-Román J
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.