These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthesis and biological evaluation of 13α-estrone derivatives as potential antiproliferative agents. Szabó J; Pataki Z; Wölfling J; Schneider G; Bózsity N; Minorics R; Zupkó I; Mernyák E Steroids; 2016 Sep; 113():14-21. PubMed ID: 27263437 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Antiproliferative Activity of Steroidal Diaryl Ethers. Kovács É; Ali H; Minorics R; Traj P; Resch V; Paragi G; Bruszel B; Zupkó I; Mernyák E Molecules; 2023 Jan; 28(3):. PubMed ID: 36770863 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Estrone Heterodimers and Evaluation of Their In Vitro Antiproliferative Activity. Bózsity N; Nagy V; Szabó J; Pálházi B; Kele Z; Resch V; Paragi G; Zupkó I; Minorics R; Mernyák E Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673860 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-yl)methyl]-carboxamides on d-secoestrone scaffolds. Szabó J; Bacsa I; Wölfling J; Schneider G; Zupkó I; Varga M; Herman BE; Kalmár L; Szécsi M; Mernyák E J Enzyme Inhib Med Chem; 2016 Aug; 31(4):574-9. PubMed ID: 26360618 [TBL] [Abstract][Full Text] [Related]
7. Microwave-assisted Phospha-Michael addition reactions in the 13α-oestrone series and Mernyák E; Bartha S; Kóczán L; Jójárt R; Resch V; Paragi G; Vágvölgyi M; Hunyadi A; Bruszel B; Zupkó I; Minorics R J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1931-1937. PubMed ID: 34445919 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and in vitro antiproliferative evaluation of d-secooxime derivatives of 13β- and 13α-estrone. Mernyák E; Fiser G; Szabó J; Bodnár B; Schneider G; Kovács I; Ocsovszki I; Zupkó I; Wölfling J Steroids; 2014 Nov; 89():47-55. PubMed ID: 25150017 [TBL] [Abstract][Full Text] [Related]
9. Pd-catalyzed Suzuki-Miyaura couplings and evaluation of 13α-estrone derivatives as potential anticancer agents. Jójárt R; Ali H; Horváth G; Kele Z; Zupkó I; Mernyák E Steroids; 2020 Dec; 164():108731. PubMed ID: 32946911 [TBL] [Abstract][Full Text] [Related]
10. 2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. Romagnoli R; Kimatrai Salvador M; Schiaffino Ortega S; Baraldi PG; Oliva P; Baraldi S; Lopez-Cara LC; Brancale A; Ferla S; Hamel E; Balzarini J; Liekens S; Mattiuzzo E; Basso G; Viola G Eur J Med Chem; 2018 Jan; 143():683-698. PubMed ID: 29220790 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. Mernyák E; Kovács I; Minorics R; Sere P; Czégány D; Sinka I; Wölfling J; Schneider G; Újfaludi Z; Boros I; Ocsovszki I; Varga M; Zupkó I J Steroid Biochem Mol Biol; 2015 Jun; 150():123-34. PubMed ID: 25845933 [TBL] [Abstract][Full Text] [Related]
12. Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer Activity of 4-Substituted Coumarins: A Novel Class of Potent Tubulin Polymerization Inhibitors. Cao D; Liu Y; Yan W; Wang C; Bai P; Wang T; Tang M; Wang X; Yang Z; Ma B; Ma L; Lei L; Wang F; Xu B; Zhou Y; Yang T; Chen L J Med Chem; 2016 Jun; 59(12):5721-39. PubMed ID: 27213819 [TBL] [Abstract][Full Text] [Related]
13. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Perin N; Hok L; Beč A; Persoons L; Vanstreels E; Daelemans D; Vianello R; Hranjec M Eur J Med Chem; 2021 Feb; 211():113003. PubMed ID: 33248847 [TBL] [Abstract][Full Text] [Related]
14. Novel hybrid nocodazole analogues as tubulin polymerization inhibitors and their antiproliferative activity. Kale SS; Jedhe GS; Meshram SN; Santra MK; Hamel E; Sanjayan GJ Bioorg Med Chem Lett; 2015 May; 25(9):1982-5. PubMed ID: 25817588 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, cytotoxic evaluation and molecular docking study of 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazoles as tubulin polymerization inhibitors. Salehi M; Amini M; Ostad SN; Riazi GH; Assadieskandar A; Shafiei B; Shafiee A Bioorg Med Chem; 2013 Dec; 21(24):7648-54. PubMed ID: 24238904 [TBL] [Abstract][Full Text] [Related]
16. Syntheses and antiproliferative effects of D-homo- and D-secoestrones. Mernyák E; Szabó J; Bacsa I; Huber J; Schneider G; Minorics R; Bózsity N; Zupkó I; Varga M; Bikádi Z; Hazai E; Wölfling J Steroids; 2014 Sep; 87():128-36. PubMed ID: 24928727 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. Wang G; Liu W; Gong Z; Huang Y; Li Y; Peng Z J Enzyme Inhib Med Chem; 2020 Dec; 35(1):139-144. PubMed ID: 31724435 [TBL] [Abstract][Full Text] [Related]
18. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Stefański T; Mikstacka R; Kurczab R; Dutkiewicz Z; Kucińska M; Murias M; Zielińska-Przyjemska M; Cichocki M; Teubert A; Kaczmarek M; Hogendorf A; Sobiak S Eur J Med Chem; 2018 Jan; 144():797-816. PubMed ID: 29291446 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Li L; Quan D; Chen J; Ding J; Zhao J; Lv L; Chen J Eur J Med Chem; 2019 Dec; 184():111732. PubMed ID: 31610372 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Wang G; Liu W; Peng Z; Huang Y; Gong Z; Li Y Bioorg Chem; 2020 Oct; 103():104141. PubMed ID: 32750611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]