BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33121373)

  • 1. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors.
    Salim L; Desaulniers JP
    Nucleic Acid Ther; 2021 Feb; 31(1):21-38. PubMed ID: 33121373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial siRNA Polyplexes for Receptor Targeting.
    Lee DJ; Wagner E
    Methods Mol Biol; 2019; 1974():83-98. PubMed ID: 31098997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics.
    Gangopadhyay S; Nikam RR; Gore KR
    Nucleic Acid Ther; 2021 Aug; 31(4):245-270. PubMed ID: 33595381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration.
    Muralidharan R; Babu A; Amreddy N; Basalingappa K; Mehta M; Chen A; Zhao YD; Kompella UB; Munshi A; Ramesh R
    J Nanobiotechnology; 2016 Jun; 14(1):47. PubMed ID: 27328938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia.
    Lee DJ; Kessel E; Lehto T; Liu X; Yoshinaga N; Padari K; Chen YC; Kempter S; Uchida S; Rädler JO; Pooga M; Sheu MT; Kataoka K; Wagner E
    Bioconjug Chem; 2017 Sep; 28(9):2393-2409. PubMed ID: 28772071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand.
    Lee DJ; Kessel E; Edinger D; He D; Klein PM; Voith von Voithenberg L; Lamb DC; Lächelt U; Lehto T; Wagner E
    Biomaterials; 2016 Jan; 77():98-110. PubMed ID: 26584350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folate receptor-targeted RNAi nanoparticles for silencing STAT3 in tumor-associated macrophages and tumor cells.
    Chen J; Dou Y; Tang Y; Zhang X
    Nanomedicine; 2020 Apr; 25():102173. PubMed ID: 32084593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy.
    Gupta A; Kaur CD; Saraf S; Saraf S
    J Recept Signal Transduct Res; 2017 Jun; 37(3):314-323. PubMed ID: 28095746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies.
    Deng Y; Wang CC; Choy KW; Du Q; Chen J; Wang Q; Li L; Chung TK; Tang T
    Gene; 2014 Apr; 538(2):217-27. PubMed ID: 24406620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Journey of siRNA: Clinical Developments and Targeted Delivery.
    Nikam RR; Gore KR
    Nucleic Acid Ther; 2018 Aug; 28(4):209-224. PubMed ID: 29584585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise.
    Das M; Musetti S; Huang L
    Nucleic Acid Ther; 2019 Apr; 29(2):61-66. PubMed ID: 30562145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of new RNAi therapeutics.
    Liu G; Wong-Staal F; Li QX
    Histol Histopathol; 2007 Feb; 22(2):211-7. PubMed ID: 17149694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical advances of siRNA therapeutics.
    Hu B; Weng Y; Xia XH; Liang XJ; Huang Y
    J Gene Med; 2019 Jul; 21(7):e3097. PubMed ID: 31069898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo application of RNA interference: from functional genomics to therapeutics.
    Lu PY; Xie F; Woodle MC
    Adv Genet; 2005; 54():117-42. PubMed ID: 16096010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of folate-labeled siRNAs from a folate derivative phosphoramidite.
    Salim L; Desaulniers JP
    Org Biomol Chem; 2023 Apr; 21(16):3365-3372. PubMed ID: 36808193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. siRNA therapeutics: a clinical reality.
    Saw PE; Song EW
    Sci China Life Sci; 2020 Apr; 63(4):485-500. PubMed ID: 31054052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-targeted delivery of therapeutic siRNA.
    Ikeda Y; Taira K
    Pharm Res; 2006 Aug; 23(8):1631-40. PubMed ID: 16850274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts.
    Yoshizawa T; Hattori Y; Hakoshima M; Koga K; Maitani Y
    Eur J Pharm Biopharm; 2008 Nov; 70(3):718-25. PubMed ID: 18647651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming obstacles to develop effective and safe siRNA therapeutics.
    Li L; Shen Y
    Expert Opin Biol Ther; 2009 May; 9(5):609-19. PubMed ID: 19392577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct cytoplasmic delivery of RNAi therapeutics through a non-lysosomal pathway for enhanced gene therapy.
    Zhou J; Zhang J; Chen S; Lin Q; Zhu R; Wang L; Chen X; Li J; Yang H
    Acta Biomater; 2023 Oct; 170():401-414. PubMed ID: 37625679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.