These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. Muralidharan R; Babu A; Amreddy N; Basalingappa K; Mehta M; Chen A; Zhao YD; Kompella UB; Munshi A; Ramesh R J Nanobiotechnology; 2016 Jun; 14(1):47. PubMed ID: 27328938 [TBL] [Abstract][Full Text] [Related]
5. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia. Lee DJ; Kessel E; Lehto T; Liu X; Yoshinaga N; Padari K; Chen YC; Kempter S; Uchida S; Rädler JO; Pooga M; Sheu MT; Kataoka K; Wagner E Bioconjug Chem; 2017 Sep; 28(9):2393-2409. PubMed ID: 28772071 [TBL] [Abstract][Full Text] [Related]
6. Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand. Lee DJ; Kessel E; Edinger D; He D; Klein PM; Voith von Voithenberg L; Lamb DC; Lächelt U; Lehto T; Wagner E Biomaterials; 2016 Jan; 77():98-110. PubMed ID: 26584350 [TBL] [Abstract][Full Text] [Related]
7. Folate receptor-targeted RNAi nanoparticles for silencing STAT3 in tumor-associated macrophages and tumor cells. Chen J; Dou Y; Tang Y; Zhang X Nanomedicine; 2020 Apr; 25():102173. PubMed ID: 32084593 [TBL] [Abstract][Full Text] [Related]
8. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy. Gupta A; Kaur CD; Saraf S; Saraf S J Recept Signal Transduct Res; 2017 Jun; 37(3):314-323. PubMed ID: 28095746 [TBL] [Abstract][Full Text] [Related]
9. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Deng Y; Wang CC; Choy KW; Du Q; Chen J; Wang Q; Li L; Chung TK; Tang T Gene; 2014 Apr; 538(2):217-27. PubMed ID: 24406620 [TBL] [Abstract][Full Text] [Related]
10. Journey of siRNA: Clinical Developments and Targeted Delivery. Nikam RR; Gore KR Nucleic Acid Ther; 2018 Aug; 28(4):209-224. PubMed ID: 29584585 [TBL] [Abstract][Full Text] [Related]
11. RNA Interference-Based Cancer Drugs: The Roadblocks, and the "Delivery" of the Promise. Das M; Musetti S; Huang L Nucleic Acid Ther; 2019 Apr; 29(2):61-66. PubMed ID: 30562145 [TBL] [Abstract][Full Text] [Related]
12. Development of new RNAi therapeutics. Liu G; Wong-Staal F; Li QX Histol Histopathol; 2007 Feb; 22(2):211-7. PubMed ID: 17149694 [TBL] [Abstract][Full Text] [Related]
13. Clinical advances of siRNA therapeutics. Hu B; Weng Y; Xia XH; Liang XJ; Huang Y J Gene Med; 2019 Jul; 21(7):e3097. PubMed ID: 31069898 [TBL] [Abstract][Full Text] [Related]
14. In vivo application of RNA interference: from functional genomics to therapeutics. Lu PY; Xie F; Woodle MC Adv Genet; 2005; 54():117-42. PubMed ID: 16096010 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of folate-labeled siRNAs from a folate derivative phosphoramidite. Salim L; Desaulniers JP Org Biomol Chem; 2023 Apr; 21(16):3365-3372. PubMed ID: 36808193 [TBL] [Abstract][Full Text] [Related]
16. siRNA therapeutics: a clinical reality. Saw PE; Song EW Sci China Life Sci; 2020 Apr; 63(4):485-500. PubMed ID: 31054052 [TBL] [Abstract][Full Text] [Related]
18. Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Yoshizawa T; Hattori Y; Hakoshima M; Koga K; Maitani Y Eur J Pharm Biopharm; 2008 Nov; 70(3):718-25. PubMed ID: 18647651 [TBL] [Abstract][Full Text] [Related]
19. Overcoming obstacles to develop effective and safe siRNA therapeutics. Li L; Shen Y Expert Opin Biol Ther; 2009 May; 9(5):609-19. PubMed ID: 19392577 [TBL] [Abstract][Full Text] [Related]
20. Direct cytoplasmic delivery of RNAi therapeutics through a non-lysosomal pathway for enhanced gene therapy. Zhou J; Zhang J; Chen S; Lin Q; Zhu R; Wang L; Chen X; Li J; Yang H Acta Biomater; 2023 Oct; 170():401-414. PubMed ID: 37625679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]