These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 33121373)

  • 21. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies.
    Traber GM; Yu AM
    J Pharmacol Exp Ther; 2023 Jan; 384(1):133-154. PubMed ID: 35680378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA interference in the era of nucleic acid therapeutics.
    Jadhav V; Vaishnaw A; Fitzgerald K; Maier MA
    Nat Biotechnol; 2024 Mar; 42(3):394-405. PubMed ID: 38409587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. siRNA: Mechanism of action, challenges, and therapeutic approaches.
    Alshaer W; Zureigat H; Al Karaki A; Al-Kadash A; Gharaibeh L; Hatmal MM; Aljabali AAA; Awidi A
    Eur J Pharmacol; 2021 Aug; 905():174178. PubMed ID: 34044011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted delivery and enhanced gene-silencing activity of centrally modified folic acid-siRNA conjugates.
    Salim L; Islam G; Desaulniers JP
    Nucleic Acids Res; 2020 Jan; 48(1):75-85. PubMed ID: 31777918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. siRNA-based therapeutic approaches for rheumatic diseases.
    Apparailly F; Jorgensen C
    Nat Rev Rheumatol; 2013 Jan; 9(1):56-62. PubMed ID: 23090506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The current state and future directions of RNAi-based therapeutics.
    Setten RL; Rossi JJ; Han SP
    Nat Rev Drug Discov; 2019 Jun; 18(6):421-446. PubMed ID: 30846871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging Approaches for Enabling RNAi Therapeutics.
    Mallick AM; Tripathi A; Mishra S; Mukherjee A; Dutta C; Chatterjee A; Sinha Roy R
    Chem Asian J; 2022 Aug; 17(16):e202200451. PubMed ID: 35689534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Centyrin ligands for extrahepatic delivery of siRNA.
    Klein D; Goldberg S; Theile CS; Dambra R; Haskell K; Kuhar E; Lin T; Parmar R; Manoharan M; Richter M; Wu M; Mendrola Zarazowski J; Jadhav V; Maier MA; Sepp-Lorenzino L; O'Neil K; Dudkin V
    Mol Ther; 2021 Jun; 29(6):2053-2066. PubMed ID: 33601052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity.
    Akhtar S; Benter I
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):164-82. PubMed ID: 17481774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a targeted siRNA delivery system using FOL-PEG-PEI conjugate.
    Biswal BK; Debata NB; Verma RS
    Mol Biol Rep; 2010 Jul; 37(6):2919-26. PubMed ID: 19816791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The design and exogenous delivery of siRNA for post-transcriptional gene silencing.
    Gilmore IR; Fox SP; Hollins AJ; Sohail M; Akhtar S
    J Drug Target; 2004 Jul; 12(6):315-40. PubMed ID: 15545082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient intracellular delivery and multiple-target gene silencing triggered by tripodal RNA based nanoparticles: a promising approach in liver-specific RNAi delivery.
    Sajeesh S; Lee TY; Kim JK; Son DS; Hong SW; Kim S; Yun WS; Kim S; Chang C; Li C; Lee DK
    J Control Release; 2014 Dec; 196():28-36. PubMed ID: 25251899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
    Varshosaz J; Farzan M
    World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delivering small interfering RNA for novel therapeutics.
    Lu PY; Woodle MC
    Methods Mol Biol; 2008; 437():93-107. PubMed ID: 18369963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies for in vivo delivery of siRNAs: recent progress.
    Higuchi Y; Kawakami S; Hashida M
    BioDrugs; 2010 Jun; 24(3):195-205. PubMed ID: 20462284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics.
    Fu Z; Zhang X; Zhou X; Ur-Rehman U; Yu M; Liang H; Guo H; Guo X; Kong Y; Su Y; Ye Y; Hu X; Cheng W; Wu J; Wang Y; Gu Y; Lu SF; Wu D; Zen K; Li J; Yan C; Zhang CY; Chen X
    Cell Res; 2021 Jun; 31(6):631-648. PubMed ID: 33782530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonviral in vivo delivery of therapeutic small interfering RNAs.
    Aigner A
    Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy.
    Miele E; Spinelli GP; Miele E; Di Fabrizio E; Ferretti E; Tomao S; Gulino A
    Int J Nanomedicine; 2012; 7():3637-57. PubMed ID: 22915840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted delivery of short interfering RNAs--strategies for in vivo delivery.
    Wullner U; Neef I; Tur MK; Barth S
    Recent Pat Anticancer Drug Discov; 2009 Jan; 4(1):1-8. PubMed ID: 19149683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.