These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33121379)

  • 1. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry.
    Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI
    J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrist-specific accelerometry methods for estimating free-living physical activity.
    Kingsley MIC; Nawaratne R; O'Halloran PD; Montoye AHK; Alahakoon D; De Silva D; Staley K; Nicholson M
    J Sci Med Sport; 2019 Jun; 22(6):677-683. PubMed ID: 30558904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
    Scott JJ; Rowlands AV; Cliff DP; Morgan PJ; Plotnikoff RC; Lubans DR
    J Sci Med Sport; 2017 Dec; 20(12):1101-1106. PubMed ID: 28501418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I
    Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triaxial accelerometer output predicts oxygen uptake in adults with Down syndrome.
    Allred AT; Choi P; Agiovlasitis S
    Disabil Rehabil; 2021 Sep; 43(18):2602-2609. PubMed ID: 31880164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance.
    Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF
    Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713
    [No Abstract]   [Full Text] [Related]  

  • 11. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of physical activity assessed using hip- and wrist-worn accelerometers.
    Kamada M; Shiroma EJ; Harris TB; Lee IM
    Gait Posture; 2016 Feb; 44():23-8. PubMed ID: 27004628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning.
    Mardini MT; Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning.
    Mardini MT; Nerella S; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    AMIA Annu Symp Proc; 2020; 2020():803-812. PubMed ID: 33936455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrist-based accelerometer cut-points for quantifying moderate-to-vigorous intensity physical activity in Parkinson's disease.
    Jeng B; Cederberg KLJ; Lai B; Sasaki JE; Bamman MM; Motl RW
    Gait Posture; 2022 Jan; 91():235-239. PubMed ID: 34749075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study.
    White T; Westgate K; Hollidge S; Venables M; Olivier P; Wareham N; Brage S
    Int J Obes (Lond); 2019 Nov; 43(11):2333-2342. PubMed ID: 30940917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.