These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 33121402)

  • 1. Recognition of Ion Ligand Binding Sites Based on Amino Acid Features with the Fusion of Energy, Physicochemical and Structural Features.
    Wang S; Hu X; Feng Z; Liu L; Sun K; Xu S
    Curr Pharm Des; 2021; 27(8):1093-1102. PubMed ID: 33121402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing ion ligand binding sites by SMO algorithm.
    Wang S; Hu X; Feng Z; Zhang X; Liu L; Sun K; Xu S
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 3):53. PubMed ID: 31823742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
    Hu X; Dong Q; Yang J; Zhang Y
    Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of acid radical ion binding residues by K-nearest neighbors classifier.
    Liu L; Hu X; Feng Z; Zhang X; Wang S; Xu S; Sun K
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 3):52. PubMed ID: 31823720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of metal ion binding sites based on amino acid sequences.
    Cao X; Hu X; Zhang X; Gao S; Ding C; Feng Y; Bao W
    PLoS One; 2017; 12(8):e0183756. PubMed ID: 28854211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Protein Ion-Ligand Binding Sites with ELECTRA.
    Essien C; Jiang L; Wang D; Xu D
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of Metal Ion Ligand-Binding Residues by Adding Correlation Features and Propensity Factors.
    Xu S; Hu X; Feng Z; Pang J; Sun K; You X; Wang Z
    Front Genet; 2021; 12():793800. PubMed ID: 35058970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognizing Ion Ligand-Binding Residues by Random Forest Algorithm Based on Optimized Dihedral Angle.
    Liu L; Hu X; Feng Z; Wang S; Sun K; Xu S
    Front Bioeng Biotechnol; 2020; 8():493. PubMed ID: 32596216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing protein-metal ion ligands binding residues by random forest algorithm with adding orthogonal properties.
    You X; Hu X; Feng Z; Wang Z; Hao S; Yang C
    Comput Biol Chem; 2022 Jun; 98():107693. PubMed ID: 35605305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of metal ion ligand binding residues by adding disorder value and propensity factors based on deep learning algorithm.
    Hao S; Hu X; Feng Z; Sun K; You X; Wang Z; Yang C
    Front Genet; 2022; 13():969412. PubMed ID: 36035120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A web server for analysis, comparison and prediction of protein ligand binding sites.
    Singh H; Srivastava HK; Raghava GP
    Biol Direct; 2016 Mar; 11(1):14. PubMed ID: 27016210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Ca
    Sun K; Hu X; Feng Z; Wang H; Lv H; Wang Z; Zhang G; Xu S; You X
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):324. PubMed ID: 35045825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein ligand-specific binding residue predictions by an ensemble classifier.
    Hu X; Wang K; Dong Q
    BMC Bioinformatics; 2016 Nov; 17(1):470. PubMed ID: 27855637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIB: Metal Ion-Binding Site Prediction and Docking Server.
    Lin YF; Cheng CW; Shih CS; Hwang JK; Yu CS; Lu CH
    J Chem Inf Model; 2016 Dec; 56(12):2287-2291. PubMed ID: 27976886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm.
    Chang DT; Oyang YJ; Lin JH
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W233-8. PubMed ID: 15991337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ligand-binding residues using protein sequence profile alignment and query-specific support vector machine model.
    Hu J; Rao L; Fan X; Zhang G
    Anal Biochem; 2020 Sep; 604():113799. PubMed ID: 32622978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information.
    Ma X; Guo J; Sun X
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Identification of Metal Ion Ligand-Binding Residues by Adding the Reclassified Relative Solvent Accessibility.
    Hu X; Feng Z; Zhang X; Liu L; Wang S
    Front Genet; 2020; 11():214. PubMed ID: 32265982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.