These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33121788)

  • 21. Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method - An application on Shenzhen city in China.
    Liao X; Tian Y; Gan Y; Ji J
    Sci Total Environ; 2020 Nov; 745():141176. PubMed ID: 32738699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.
    Islam KMN
    Sci Total Environ; 2017 Feb; 580():755-769. PubMed ID: 28024747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of city-level carbon footprint evaluation by applying single- and multi-regional input-output tables.
    Long Y; Yoshida Y; Liu Q; Zhang H; Wang S; Fang K
    J Environ Manage; 2020 Apr; 260():110108. PubMed ID: 32090821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards a Green Port strategy: The decarbonisation of the Port of Vigo (NW Spain).
    Botana C; Fernández E; Feijoo G
    Sci Total Environ; 2023 Jan; 856(Pt 2):159198. PubMed ID: 36195143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.
    Salvador S; Corazzin M; Romanzin A; Bovolenta S
    J Environ Manage; 2017 Jul; 196():644-650. PubMed ID: 28365549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities.
    Hillman T; Ramaswami A
    Environ Sci Technol; 2010 Mar; 44(6):1902-10. PubMed ID: 20136120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment.
    Kong D; Shan J; Iacoboni M; Maguin SR
    Waste Manag Res; 2012 Aug; 30(8):800-12. PubMed ID: 22588112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.
    Noya I; Aldea X; Gasol CM; González-García S; Amores MJ; Colón J; Ponsá S; Roman I; Rubio MA; Casas E; Moreira MT; Boschmonart-Rives J
    J Environ Manage; 2016 Apr; 171():133-143. PubMed ID: 26861226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reducing Urban Greenhouse Gas Footprints.
    Pichler PP; Zwickel T; Chavez A; Kretschmer T; Seddon J; Weisz H
    Sci Rep; 2017 Nov; 7(1):14659. PubMed ID: 29116205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Progress in research of urban greenhouse gas emission inventory].
    Chen CC; Liu CL; Tian G; Wang HH; Li Z
    Huan Jing Ke Xue; 2010 Nov; 31(11):2780-7. PubMed ID: 21250466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The knowledge dissemination trajectory research of the carbon footprint domain: a main path analysis.
    Yu D; Chen Y
    Environ Sci Pollut Res Int; 2022 May; 29(23):34119-34136. PubMed ID: 35034300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Research developments in methods to reduce the carbon footprint of the food system: a review.
    Xu Z; Sun DW; Zeng XA; Liu D; Pu H
    Crit Rev Food Sci Nutr; 2015; 55(9):1270-86. PubMed ID: 24689789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.
    Vázquez-Rowe I; Larrea-Gallegos G; Villanueva-Rey P; Gilardino A
    PLoS One; 2017; 12(11):e0188182. PubMed ID: 29145461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale, distribution and variations of global greenhouse gas emissions driven by U.S. households.
    Song K; Qu S; Taiebat M; Liang S; Xu M
    Environ Int; 2019 Dec; 133(Pt A):105137. PubMed ID: 31518931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.
    O'Brien D; Shalloo L; Patton J; Buckley F; Grainger C; Wallace M
    Animal; 2012 Sep; 6(9):1512-27. PubMed ID: 23031525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental impacts of household consumption in Europe: Comparing process-based LCA and environmentally extended input-output analysis.
    Castellani V; Beylot A; Sala S
    J Clean Prod; 2019 Dec; 240():117966. PubMed ID: 31839696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution.
    Liu W; Zhang G; Wang X; Lu F; Ouyang Z
    Sci Total Environ; 2018 Dec; 645():1296-1308. PubMed ID: 30248854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon footprint and land requirement for dairy herd rations: impacts of feed production practices and regional climate variations.
    Henriksson M; Cederberg C; Swensson C
    Animal; 2014 Aug; 8(8):1329-38. PubMed ID: 24666621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.