BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33121807)

  • 1. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage.
    Kim HJ; Kim Y
    Chemosphere; 2021 Apr; 269():128720. PubMed ID: 33121807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms.
    Fan C; Guo C; Zhang J; Ding C; Li X; Reinfelder JR; Lu G; Shi Z; Dang Z
    J Environ Sci (China); 2019 Jun; 80():218-228. PubMed ID: 30952339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite.
    Li J; Xie Y; Lu G; Ye H; Yi X; Reinfelder JR; Lin Z; Dang Z
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15492-15506. PubMed ID: 29569199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms.
    Xie Y; Ye H; Wen Z; Dang Z; Lu G
    Sci Total Environ; 2022 Nov; 848():157863. PubMed ID: 35934033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors.
    Fan C; Guo C; Chen M; Huang W; Wan J; Reinfelder JR; Li X; Zeng Y; Lu G; Dang Z
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):617-627. PubMed ID: 30411291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite.
    Choppala G; Burton ED
    PLoS One; 2018; 13(12):e0208355. PubMed ID: 30517205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage.
    Xie Y; Lu G; Yang C; Qu L; Chen M; Guo C; Dang Z
    PLoS One; 2018; 13(1):e0190010. PubMed ID: 29304091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.
    Kumpulainen S; von der Kammer F; Hofmann T
    Water Res; 2008 Apr; 42(8-9):2051-60. PubMed ID: 18221768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.
    Chen M; Lu G; Guo C; Yang C; Wu J; Huang W; Yee N; Dang Z
    Chemosphere; 2015 Jan; 119():734-743. PubMed ID: 25189685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aluminum incorporation on the schwertmannite structure and surface properties.
    Carrero S; Fernandez-Martinez A; Pérez-López R; Cama J; Dejoie C; Nieto JM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1383-1391. PubMed ID: 35838030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution.
    Chen M; Lu G; Wu J; Sun J; Yang C; Xie Y; Wang K; Deng F; Yi X; Dang Z
    Environ Res; 2020 Jul; 186():109490. PubMed ID: 32302871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
    Carlson L; Bigham JM; Schwertmann U; Kyek A; Wagner F
    Environ Sci Technol; 2002 Apr; 36(8):1712-9. PubMed ID: 11993868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment.
    Fan C; Guo C; Chen W; Lu G; Shen Y; Dang Z
    J Environ Sci (China); 2023 Apr; 126():612-620. PubMed ID: 36503787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y
    Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China.
    Zhao H; Xia B; Qin J; Zhang J
    J Environ Sci (China); 2012; 24(6):979-89. PubMed ID: 23505864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments.
    Ying H; Zhao W; Feng X; Gu C; Wang X
    Chemosphere; 2022 Sep; 303(Pt 2):135077. PubMed ID: 35623433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.