These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 33121874)
1. Extinguishing the Embers: Targeting AML Metabolism. Culp-Hill R; D'Alessandro A; Pietras EM Trends Mol Med; 2021 Apr; 27(4):332-344. PubMed ID: 33121874 [TBL] [Abstract][Full Text] [Related]
2. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471 [TBL] [Abstract][Full Text] [Related]
3. Targeting mitochondrial respiration for the treatment of acute myeloid leukemia. Carter JL; Hege K; Kalpage HA; Edwards H; Hüttemann M; Taub JW; Ge Y Biochem Pharmacol; 2020 Dec; 182():114253. PubMed ID: 33011159 [TBL] [Abstract][Full Text] [Related]
4. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047 [TBL] [Abstract][Full Text] [Related]
5. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Sheth AI; Althoff MJ; Tolison H; Engel K; Amaya ML; Krug AE; Young TN; Minhajuddin M; Pei S; Patel SB; Winters A; Miller R; Shelton IT; St-Germain J; Ling T; Jones CL; Raught B; Gillen AE; Ransom M; Staggs S; Smith CA; Pollyea DA; Stevens BM; Jordan CT Cancer Discov; 2024 Oct; 14(10):1922-1939. PubMed ID: 38787341 [TBL] [Abstract][Full Text] [Related]
6. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Daga S; Rosenberger A; Quehenberger F; Krisper N; Prietl B; Reinisch A; Zebisch A; Sill H; Wölfler A Cancer Med; 2019 Apr; 8(4):1771-1778. PubMed ID: 30848055 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. de Beauchamp L; Himonas E; Helgason GV Leukemia; 2022 Jan; 36(1):1-12. PubMed ID: 34561557 [TBL] [Abstract][Full Text] [Related]
8. Lipids and the cancer stemness regulatory system in acute myeloid leukemia. Lim INX; Nagree MS; Xie SZ Essays Biochem; 2022 Sep; 66(4):333-344. PubMed ID: 35996953 [TBL] [Abstract][Full Text] [Related]
9. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. de Figueiredo-Pontes LL; Pintão MC; Oliveira LC; Dalmazzo LF; Jácomo RH; Garcia AB; Falcão RP; Rego EM Cytometry B Clin Cytom; 2008 May; 74(3):163-8. PubMed ID: 18200595 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Jones CL; Stevens BM; D'Alessandro A; Reisz JA; Culp-Hill R; Nemkov T; Pei S; Khan N; Adane B; Ye H; Krug A; Reinhold D; Smith C; DeGregori J; Pollyea DA; Jordan CT Cancer Cell; 2018 Nov; 34(5):724-740.e4. PubMed ID: 30423294 [TBL] [Abstract][Full Text] [Related]
15. circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation. Yang X; Liu J; Liu W; Wu H; Wei Y; Guo X; Jia H; Can C; Wang D; Hu X; Ma D Leukemia; 2024 May; 38(5):1057-1071. PubMed ID: 38424136 [TBL] [Abstract][Full Text] [Related]
16. TIM-3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. Kikushige Y; Miyamoto T Int J Hematol; 2013 Dec; 98(6):627-33. PubMed ID: 24046178 [TBL] [Abstract][Full Text] [Related]
17. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Pelosi E; Castelli G; Testa U Blood Cells Mol Dis; 2015 Dec; 55(4):336-46. PubMed ID: 26460257 [TBL] [Abstract][Full Text] [Related]
18. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Marchand T; Pinho S Front Immunol; 2021; 12():775128. PubMed ID: 34721441 [TBL] [Abstract][Full Text] [Related]
19. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine. Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674 [TBL] [Abstract][Full Text] [Related]
20. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species. Dou J; Li L; Guo M; Mei F; Zheng D; Xu H; Xue R; Bao X; Zhao F; Zhang Y Int J Nanomedicine; 2021; 16():1231-1244. PubMed ID: 33633448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]