These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33121973)

  • 1. Morphometric analysis of in vitro human crystalline lenses using digital shadow photogrammetry.
    Mohamed A; Durkee HA; Williams S; Manns F; Ho A; Parel JA; Augusteyn RC
    Exp Eye Res; 2021 Jan; 202():108334. PubMed ID: 33121973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro dimensions and curvatures of human lenses.
    Rosen AM; Denham DB; Fernandez V; Borja D; Ho A; Manns F; Parel JM; Augusteyn RC
    Vision Res; 2006 Mar; 46(6-7):1002-9. PubMed ID: 16321421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation.
    Schachar RA
    Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of the cornea and globe dimensions to the changes in adult human crystalline lens diameter, thickness and power with age.
    Mohamed A; Nandyala S; Ho A; Manns F; Parel JA; Augusteyn RC
    Exp Eye Res; 2021 Aug; 209():108653. PubMed ID: 34097905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated human crystalline lens three-dimensional shape: A comparison between Indian and European populations.
    Mohamed A; Nandyala S; Martinez-Enriquez E; Heilman BM; Augusteyn RC; de Castro A; Ruggeri M; Parel JA; Marcos S; Manns F
    Exp Eye Res; 2021 Apr; 205():108481. PubMed ID: 33545121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple view of age-related changes in the shape of the lens of the human eye.
    Wyatt HJ; Fisher RF
    Eye (Lond); 1995; 9 ( Pt 6)():772-5. PubMed ID: 8849548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth patterns of fresh human crystalline lenses measured by in vitro photographic biometry.
    Schachar RA
    J Anat; 2005 Jun; 206(6):575-80. PubMed ID: 15960767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-Related Changes to the Three-Dimensional Full Shape of the Isolated Human Crystalline Lens.
    Martinez-Enriquez E; de Castro A; Mohamed A; Sravani NG; Ruggeri M; Manns F; Marcos S
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):11. PubMed ID: 32293664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association between axial length and in vivo human crystalline lens biometry during accommodation: a swept-source optical coherence tomography study.
    Shoji T; Kato N; Ishikawa S; Ibuki H; Yamada N; Kimura I; Shinoda K
    Jpn J Ophthalmol; 2020 Jan; 64(1):93-101. PubMed ID: 31760515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.
    Zhu D; Shao Y; Leng L; Xu Z; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jul; 40(4):232-8. PubMed ID: 24901975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical models for describing the shape of the in vitro unstretched human crystalline lens.
    Smith G; Atchison DA; Iskander DR; Jones CE; Pope JM
    Vision Res; 2009 Oct; 49(20):2442-52. PubMed ID: 19647765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography.
    Du C; Shen M; Li M; Zhu D; Wang MR; Wang J
    Ophthalmology; 2012 Dec; 119(12):2479-85. PubMed ID: 22902211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth NM; Acosta AC; Arrieta-Quintera E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2118-25. PubMed ID: 20107174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo.
    Rozema JJ; Atchison DA; Kasthurirangan S; Pope JM; Tassignon MJ
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2533-40. PubMed ID: 22427565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature affects the biomechanical response of in vitro non-human primate lenses during lens stretching.
    Maceo Heilman B; Durkee H; Rowaan CJ; Arrieta E; Kelly SP; Ehrmann K; Manns F; Parel JM
    Exp Eye Res; 2022 Mar; 216():108951. PubMed ID: 35051430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.