These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33122004)

  • 1. Crystallographic Snapshots of the Dunathan and Quinonoid Intermediates provide Insights into the Reaction Mechanism of Group II Decarboxylases.
    Gayathri SC; Manoj N
    J Mol Biol; 2020 Dec; 432(24):166692. PubMed ID: 33122004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence that an extended hydrogen-bonding network influences activation of pyridoxal 5'-phosphate in aspartate aminotransferase.
    Dajnowicz S; Parks JM; Hu X; Gesler K; Kovalevsky AY; Mueser TC
    J Biol Chem; 2017 Apr; 292(14):5970-5980. PubMed ID: 28232482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the mechanism of internal aldimine formation and catalytic loop dynamics in an archaeal Group II decarboxylase.
    Chellam Gayathri S; Manoj N
    J Struct Biol; 2019 Nov; 208(2):137-151. PubMed ID: 31445086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase.
    Wang H; Yu J; Satoh Y; Nakagawa Y; Tanaka R; Kato K; Yao M
    Biochem Biophys Res Commun; 2020 Mar; 523(2):500-505. PubMed ID: 31898973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the catalytic mechanism of tyrosine phenol-lyase from X-ray structures of quinonoid intermediates.
    Milić D; Demidkina TV; Faleev NG; Matković-Calogović D; Antson AA
    J Biol Chem; 2008 Oct; 283(43):29206-14. PubMed ID: 18715865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapshots of PLP-substrate and PLP-product external aldimines as intermediates in two types of cysteine desulfurase enzymes.
    Nakamura R; Hikita M; Ogawa S; Takahashi Y; Fujishiro T
    FEBS J; 2020 Mar; 287(6):1138-1154. PubMed ID: 31587510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.
    Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC
    Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase.
    Mizuguchi H; Hayashi H; Okada K; Miyahara I; Hirotsu K; Kagamiyama H
    Biochemistry; 2001 Jan; 40(2):353-60. PubMed ID: 11148029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: involvement of Tyr70 in stabilization of the catalytic intermediates.
    Hayashi H; Kagamiyama H
    Biochemistry; 1995 Jul; 34(29):9413-23. PubMed ID: 7626611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism-Based Trapping of the Quinonoid Intermediate by Using the K276R Mutant of PLP-Dependent 3-Aminobenzoate Synthase PctV in the Biosynthesis of Pactamycin.
    Hirayama A; Miyanaga A; Kudo F; Eguchi T
    Chembiochem; 2015 Nov; 16(17):2484-90. PubMed ID: 26426567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridoxal 5'-phosphate dependent reactions: Analyzing the mechanism of aspartate aminotransferase.
    Mueser TC; Drago V; Kovalevsky A; Dajnowicz S
    Methods Enzymol; 2020; 634():333-359. PubMed ID: 32093839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase.
    Huang YM; You W; Caulkins BG; Dunn MF; Mueller LJ; Chang CE
    Protein Sci; 2016 Jan; 25(1):166-83. PubMed ID: 26013176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms.
    Huai Q; Xia Y; Chen Y; Callahan B; Li N; Ke H
    J Biol Chem; 2001 Oct; 276(41):38210-6. PubMed ID: 11431475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional studies on Salmonella typhimurium pyridoxal kinase: the first structural evidence for the formation of Schiff base with the substrate.
    Deka G; Kalyani JN; Jahangir FB; Sabharwal P; Savithri HS; Murthy MRN
    FEBS J; 2019 Sep; 286(18):3684-3700. PubMed ID: 31116912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.
    Smith AM; Brown WC; Harms E; Smith JL
    J Biol Chem; 2015 Feb; 290(9):5226-39. PubMed ID: 25568319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Targeting by a Mechanism-Based Inactivator against Pyridoxal 5'-Phosphate-Dependent Enzymes: Mechanisms of Inactivation and Alternative Turnover.
    Mascarenhas R; Le HV; Clevenger KD; Lehrer HJ; Ringe D; Kelleher NL; Silverman RB; Liu D
    Biochemistry; 2017 Sep; 56(37):4951-4961. PubMed ID: 28816437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: crystal structure and site-directed mutagenesis studies.
    Yamada T; Komoto J; Kasuya T; Takata Y; Ogawa H; Mori H; Takusagawa F
    Biochim Biophys Acta; 2008 May; 1780(5):809-18. PubMed ID: 18342636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A QM/MM simulation study of transamination reaction at the active site of aspartate aminotransferase: Free energy landscape and proton transfer pathways.
    Dutta Banik S; Bankura A; Chandra A
    J Comput Chem; 2020 Dec; 41(32):2684-2694. PubMed ID: 32932551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.
    Blahut M; Wise CE; Bruno MR; Dong G; Makris TM; Frantom PA; Dunkle JA; Outten FW
    J Biol Chem; 2019 Aug; 294(33):12444-12458. PubMed ID: 31248989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of substrate strain in the mechanism of the carbon-carbon lyases.
    Phillips RS; Demidkina TV; Faleev NG
    Bioorg Chem; 2014 Dec; 57():198-205. PubMed ID: 25035301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.