BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33122294)

  • 1. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis.
    Muckenfuss LM; Migenda Herranz AC; Boneberg FM; Clerici M; Jinek M
    Elife; 2022 Sep; 11():. PubMed ID: 36073787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the RNA Binding Properties of the Iron-Sulfur Zinc Finger Protein CPSF30.
    Pritts JD; Hursey MS; Michalek JL; Batelu S; Stemmler TL; Michel SLJ
    Biochemistry; 2020 Mar; 59(8):970-982. PubMed ID: 32027124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing.
    Pritts JD; Oluyadi AA; Huang W; Shimberg GD; Kane MA; Wilks A; Michel SLJ
    Biochemistry; 2021 Mar; 60(10):780-790. PubMed ID: 33615774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe-2S cluster.
    Shimberg GD; Michalek JL; Oluyadi AA; Rodrigues AV; Zucconi BE; Neu HM; Ghosh S; Sureschandra K; Wilson GM; Stemmler TL; Michel SL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4700-5. PubMed ID: 27071088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
    Chan SL; Huppertz I; Yao C; Weng L; Moresco JJ; Yates JR; Ule J; Manley JL; Shi Y
    Genes Dev; 2014 Nov; 28(21):2370-80. PubMed ID: 25301780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
    Kaufmann I; Martin G; Friedlein A; Langen H; Keller W
    EMBO J; 2004 Feb; 23(3):616-26. PubMed ID: 14749727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
    Sun Y; Zhang Y; Hamilton K; Manley JL; Shi Y; Walz T; Tong L
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1419-E1428. PubMed ID: 29208711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30.
    Bercovich N; Levin MJ; Vazquez MP
    Biochem Biophys Res Commun; 2009 Mar; 380(4):850-5. PubMed ID: 19338765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF.
    Gutierrez PA; Wei J; Sun Y; Tong L
    RNA; 2022 Nov; 28(11):1534-1541. PubMed ID: 36130077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease.
    Mandel CR; Kaneko S; Zhang H; Gebauer D; Vethantham V; Manley JL; Tong L
    Nature; 2006 Dec; 444(7121):953-6. PubMed ID: 17128255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor.
    Addepalli B; Hunt AG
    Nucleic Acids Res; 2007; 35(13):4453-63. PubMed ID: 17576667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants.
    Chakrabarti M; Hunt AG
    Biomolecules; 2015 Jun; 5(2):1151-68. PubMed ID: 26061761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of human poly(A) polymerase recruitment by mPSF.
    Todesca S; Sandmeir F; Keidel A; Conti E
    RNA; 2024 Jun; 30(7):795-806. PubMed ID: 38538052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex.
    Michalski D; Steiniger M
    RNA; 2015 Aug; 21(8):1404-18. PubMed ID: 26081560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-Sulfur Clusters in Zinc Finger Proteins.
    Shimberg GD; Pritts JD; Michel SLJ
    Methods Enzymol; 2018; 599():101-137. PubMed ID: 29746237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.