These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33122641)

  • 1. Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly.
    Lee T; Enomoto K; Ohshiro K; Inoue D; Kikitsu T; Hyeon-Deuk K; Pu YJ; Kim D
    Nat Commun; 2020 Oct; 11(1):5471. PubMed ID: 33122641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled electronic states in CdTe quantum dot assemblies fabricated by utilizing chemical bonding between ligands.
    Lee YS; Ito T; Shimura K; Watanabe T; Bu HB; Hyeon-Deuk K; Kim D
    Nanoscale; 2020 Apr; 12(13):7124-7133. PubMed ID: 32191241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots.
    Kim D; Tomita S; Ohshiro K; Watanabe T; Sakai T; Chang IY; Hyeon-Deuk K
    Nano Lett; 2015 Jul; 15(7):4343-7. PubMed ID: 26091186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices.
    Kavrik MS; Hachtel JA; Ko W; Qian C; Abelson A; Unlu EB; Kashyap H; Li AP; Idrobo JC; Law M
    Nat Commun; 2022 Nov; 13(1):6802. PubMed ID: 36357374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-Layer Quantum Dot Assemblies for the Enhanced Energy Transfers and Their Applications toward Efficient Solar Cells.
    Choi S; Jin H; Bang J; Kim S
    J Phys Chem Lett; 2012 Dec; 3(23):3442-7. PubMed ID: 26290970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Mobility of 24 cm
    Balazs DM; Matysiak BM; Momand J; Shulga AG; Ibáñez M; Kovalenko MV; Kooi BJ; Loi MA
    Adv Mater; 2018 Sep; 30(38):e1802265. PubMed ID: 30069938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties demonstrating strong coupling of compactly arranged Ge quantum dots.
    Zhou T; Zhong Z
    Opt Express; 2019 Aug; 27(16):22173-22180. PubMed ID: 31510512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer.
    Lv B; Liu X; Yan B; Deng J; Gao F; Chen N; Wu X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials.
    De D; Bhattacharya S; Adhikari SM; Kumar A; Bose PK; Ghatak KP
    Beilstein J Nanotechnol; 2011; 2():339-62. PubMed ID: 22003442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Dot Acceptors in Two-Dimensional Epitaxially Fused PbSe Quantum Dot Superlattices.
    Notot V; Walravens W; Berthe M; Peric N; Addad A; Wallart X; Delerue C; Hens Z; Grandidier B; Biadala L
    ACS Nano; 2022 Feb; 16(2):3081-3091. PubMed ID: 35156366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Optical Properties of Graphene and Alkyl-terminated Si and Ge Quantum Dots.
    de Weerd C; Shin Y; Marino E; Kim J; Lee H; Saeed S; Gregorkiewicz T
    Sci Rep; 2017 Oct; 7(1):14463. PubMed ID: 29089509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules.
    Koole R; Liljeroth P; de Mello Donega C; Vanmaekelbergh D; Meijerink A
    J Am Chem Soc; 2006 Aug; 128(32):10436-41. PubMed ID: 16895408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaching Bulk Mobility in PbSe Colloidal Quantum Dots 3D Superlattices.
    Pinna J; Mehrabi Koushki R; Gavhane DS; Ahmadi M; Mutalik S; Zohaib M; Protesescu L; Kooi BJ; Portale G; Loi MA
    Adv Mater; 2023 Feb; 35(8):e2207364. PubMed ID: 36308048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot.
    Ware ME; Stinaff EA; Gammon D; Doty MF; Bracker AS; Gershoni D; Korenev VL; Bădescu SC; Lyanda-Geller Y; Reinecke TL
    Phys Rev Lett; 2005 Oct; 95(17):177403. PubMed ID: 16383867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix.
    Doskaliuk N; Khalavka Y; Fochuk P
    Nanoscale Res Lett; 2016 Dec; 11(1):216. PubMed ID: 27102905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.