These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33122649)

  • 1. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts.
    Yoo JI; Seppälä S; OʼMalley MA
    Nat Commun; 2020 Oct; 11(1):5459. PubMed ID: 33122649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocontainment of genetically modified organisms by synthetic protein design.
    Mandell DJ; Lajoie MJ; Mee MT; Takeuchi R; Kuznetsov G; Norville JE; Gregg CJ; Stoddard BL; Church GM
    Nature; 2015 Feb; 518(7537):55-60. PubMed ID: 25607366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering stringent genetic biocontainment of yeast with a protein stability switch.
    Hoffmann SA; Cai Y
    Nat Commun; 2024 Feb; 15(1):1060. PubMed ID: 38316765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes.
    Cai Y; Agmon N; Choi WJ; Ubide A; Stracquadanio G; Caravelli K; Hao H; Bader JS; Boeke JD
    Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1803-8. PubMed ID: 25624482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recoded organisms engineered to depend on synthetic amino acids.
    Rovner AJ; Haimovich AD; Katz SR; Li Z; Grome MW; Gassaway BM; Amiram M; Patel JR; Gallagher RR; Rinehart J; Isaacs FJ
    Nature; 2015 Feb; 518(7537):89-93. PubMed ID: 25607356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust yeast biocontainment system with two-layered regulation switch dependent on unnatural amino acid.
    Chang T; Ding W; Yan S; Wang Y; Zhang H; Zhang Y; Ping Z; Zhang H; Huang Y; Zhang J; Wang D; Zhang W; Xu X; Shen Y; Fu X
    Nat Commun; 2023 Oct; 14(1):6487. PubMed ID: 37838746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-generation biocontainment systems for engineered organisms.
    Lee JW; Chan CTY; Slomovic S; Collins JJ
    Nat Chem Biol; 2018 Jun; 14(6):530-537. PubMed ID: 29769737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low escape-rate genome safeguards with minimal molecular perturbation of
    Agmon N; Tang Z; Yang K; Sutter B; Ikushima S; Cai Y; Caravelli K; Martin JA; Sun X; Choi WJ; Zhang A; Stracquadanio G; Hao H; Tu BP; Fenyo D; Bader JS; Boeke JD
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1470-E1479. PubMed ID: 28174266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-surface modification of non-GMO without chemical treatment by novel GMO-coupled and -separated cocultivation method.
    Miura N; Aoki W; Tokumoto N; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):293-301. PubMed ID: 19039583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering species-like barriers to sexual reproduction.
    Maselko M; Heinsch SC; Chacón JM; Harcombe WR; Smanski MJ
    Nat Commun; 2017 Oct; 8(1):883. PubMed ID: 29026112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A design for the control of apoptosis in genetically modified Saccharomyces cerevisiae.
    Nishida N; Noguchi M; Kuroda K; Ueda M
    Biosci Biotechnol Biochem; 2014; 78(2):358-62. PubMed ID: 25036693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering scalable biological systems.
    Lu TK
    Bioeng Bugs; 2010; 1(6):378-84. PubMed ID: 21468204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles for designing synthetic microbial communities.
    Johns NI; Blazejewski T; Gomes AL; Wang HH
    Curr Opin Microbiol; 2016 Jun; 31():146-153. PubMed ID: 27084981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus – new entity in science and practice].
    Naumov GI; Naumova ES; Martynenko NN; Masnef-Pomared I
    Mikrobiologiia; 2011; 80(6):723-30. PubMed ID: 22393757
    [No Abstract]   [Full Text] [Related]  

  • 15. Construction of a Saccharomyces cerevisiae strain with a high level of RNA.
    Chuwattanakul V; Kim YH; Sugiyama M; Nishiuchi H; Miwa H; Kaneko Y; Harashima S
    J Biosci Bioeng; 2011 Jul; 112(1):1-7. PubMed ID: 21571588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae.
    Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA
    Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPCR-FEX: A Fluoride-Based Selection System for Rapid GPCR Screening and Engineering.
    Yoo JI; Navaratna TA; Kolence P; O'Malley MA
    ACS Synth Biol; 2022 Jan; 11(1):39-45. PubMed ID: 34979077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast diversity and native vigor for flavor phenotypes.
    Carrau F; Gaggero C; Aguilar PS
    Trends Biotechnol; 2015 Mar; 33(3):148-54. PubMed ID: 25630239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.