These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33122649)

  • 21. Construction of multidrug-sensitive yeast with high sporulation efficiency.
    Chinen T; Ota Y; Nagumo Y; Masumoto H; Usui T
    Biosci Biotechnol Biochem; 2011; 75(8):1588-93. PubMed ID: 21821930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MPR1 as a novel selection marker in Saccharomyces cerevisiae.
    Ogawa-Mitsuhashi K; Sagane K; Kuromitsu J; Takagi H; Tsukahara K
    Yeast; 2009 Nov; 26(11):587-93. PubMed ID: 19750564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.
    Lee WH; Jin YS
    J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical sensing of DNT by engineered olfactory yeast strain.
    Radhika V; Proikas-Cezanne T; Jayaraman M; Onesime D; Ha JH; Dhanasekaran DN
    Nat Chem Biol; 2007 Jun; 3(6):325-30. PubMed ID: 17486045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research.
    Pretorius IS
    EMBO Rep; 2017 Nov; 18(11):1875-1884. PubMed ID: 29061873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.
    Kitagaki H; Kitamoto K
    Annu Rev Food Sci Technol; 2013; 4():215-35. PubMed ID: 23464572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.
    Shimizu M; Miyashita K; Kitagaki H; Ito K; Shimoi H
    J Biosci Bioeng; 2005 Dec; 100(6):678-80. PubMed ID: 16473780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic biology: GMOs in lockdown.
    Nunes-Alves C
    Nat Rev Microbiol; 2015 Mar; 13(3):125. PubMed ID: 25659321
    [No Abstract]   [Full Text] [Related]  

  • 29. Synthetic biology: GMOs in lockdown.
    Nunes-Alves C
    Nat Rev Genet; 2015 Mar; 16(3):127. PubMed ID: 25690387
    [No Abstract]   [Full Text] [Related]  

  • 30. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Addicting
    Rubini R; Mayer C
    ACS Chem Biol; 2020 Dec; 15(12):3093-3098. PubMed ID: 33227198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES.
    Luo Z; Wang L; Wang Y; Zhang W; Guo Y; Shen Y; Jiang L; Wu Q; Zhang C; Cai Y; Dai J
    Nat Commun; 2018 May; 9(1):1930. PubMed ID: 29789541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocontainment of Genetically Engineered Algae.
    Sebesta J; Xiong W; Guarnieri MT; Yu J
    Front Plant Sci; 2022; 13():839446. PubMed ID: 35310623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotechnology for secure biocontainment designs in an emerging bioeconomy.
    Arnolds KL; Dahlin LR; Ding L; Wu C; Yu J; Xiong W; Zuniga C; Suzuki Y; Zengler K; Linger JG; Guarnieri MT
    Curr Opin Biotechnol; 2021 Oct; 71():25-31. PubMed ID: 34091124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic force microscopy demonstrates that disulfide bridges are required for clustering of the yeast cell wall integrity sensor Wsc1.
    Dupres V; Heinisch JJ; DufrĂȘne YF
    Langmuir; 2011 Dec; 27(24):15129-34. PubMed ID: 22107047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New plasmids for the disruption and repeated use of selection markers in Saccharomyces cerevisiae.
    Nihei K; Kishi T
    J Gen Appl Microbiol; 2017 Jul; 63(3):199-202. PubMed ID: 28392542
    [No Abstract]   [Full Text] [Related]  

  • 38. Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment.
    Ando A; Suzuki C; Shima J
    Appl Environ Microbiol; 2005 Nov; 71(11):7075-82. PubMed ID: 16269743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of parental strain DNA fragments existing in GEMs-Fhhh.
    Hao CB; Yan J; Qu MM; Wang D; Cheng SP; Gu JD; Qiu WF; Wang YY
    J Environ Sci (China); 2003 Sep; 15(5):590-4. PubMed ID: 14562916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification.
    Johnston NR; Cline G; Strobel SA
    Chem Res Toxicol; 2022 Nov; 35(11):2085-2096. PubMed ID: 36282204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.