These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression. Du EJ; Ahn TJ; Choi MS; Kwon I; Kim HW; Kwon JY; Kang K Mol Cells; 2015 Oct; 38(10):911-7. PubMed ID: 26447139 [TBL] [Abstract][Full Text] [Related]
4. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Kwon Y; Kim SH; Ronderos DS; Lee Y; Akitake B; Woodward OM; Guggino WB; Smith DP; Montell C Curr Biol; 2010 Sep; 20(18):1672-8. PubMed ID: 20797863 [TBL] [Abstract][Full Text] [Related]
5. New insights on repellent recognition by Anopheles gambiae odorant-binding protein 1. Tzotzos G; Iley JN; Moore EA PLoS One; 2018; 13(4):e0194724. PubMed ID: 29614080 [TBL] [Abstract][Full Text] [Related]
6. Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET). Murphy EJ; Booth JC; Davrazou F; Port AM; Jones DN J Biol Chem; 2013 Feb; 288(6):4475-85. PubMed ID: 23261834 [TBL] [Abstract][Full Text] [Related]
12. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis. Li Z; Zhou JJ; Shen Z; Field L Sci China C Life Sci; 2004 Dec; 47(6):567-76. PubMed ID: 15620114 [TBL] [Abstract][Full Text] [Related]
13. AsOBP1 is required for bioallethrin repellency in the malaria vector mosquito Anopheles sinensis. Zhang Y; He S; He C; Zhou L; Xu O; Qiao L; Chen B; Cao Y; He Z Insect Sci; 2024 Oct; 31(5):1519-1532. PubMed ID: 38389031 [TBL] [Abstract][Full Text] [Related]
14. Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Rahman S; Luetje CW J Biol Chem; 2017 Nov; 292(46):18916-18923. PubMed ID: 28972152 [TBL] [Abstract][Full Text] [Related]
15. Insecticide resistance modifies mosquito response to DEET and natural repellents. Deletre E; Martin T; Duménil C; Chandre F Parasit Vectors; 2019 Mar; 12(1):89. PubMed ID: 30867033 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. Tsitoura P; Koussis K; Iatrou K J Biol Chem; 2015 Mar; 290(12):7961-72. PubMed ID: 25657000 [TBL] [Abstract][Full Text] [Related]
17. How computational studies of mosquito repellents contribute to the control of vector Borne Diseases. Miszta P; Basak SC; Natarajan R; Nowak W Curr Comput Aided Drug Des; 2013 Sep; 9(3):300-7. PubMed ID: 24010929 [TBL] [Abstract][Full Text] [Related]
18. Development and laboratory validation of a plant-derived repellent blend, effective against Aedes aegypti [Diptera: Culicidae], Anopheles gambiae [Diptera: Culicidae] and Culex quinquefasciatus [Diptera: Culicidae]. Wood MJ; Bull JC; Kanagachandran K; Butt TM PLoS One; 2024; 19(3):e0299144. PubMed ID: 38512948 [TBL] [Abstract][Full Text] [Related]
19. Interactions of DEET and Novel Repellents With Mosquito Odorant Receptors. Grant GG; Estrera RR; Pathak N; Hall CD; Tsikolia M; Linthicum KJ; Bernier UR; Hall AC J Med Entomol; 2020 Jul; 57(4):1032-1040. PubMed ID: 32048720 [TBL] [Abstract][Full Text] [Related]