BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33122680)

  • 1. A comparative investigation of normal and inverted exchange bias effect for magnetic fluid hyperthermia applications.
    Tsopoe SP; Borgohain C; Fopase R; Pandey LM; Borah JP
    Sci Rep; 2020 Oct; 10(1):18666. PubMed ID: 33122680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies.
    Rastegari B; Karbalaei-Heidari HR; Zeinali S; Sheardown H
    Colloids Surf B Biointerfaces; 2017 Oct; 158():589-601. PubMed ID: 28750341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis.
    Esmaeili E; Khalili M; Sohi AN; Hosseinzadeh S; Taheri B; Soleimani M
    J Cell Physiol; 2019 Aug; 234(8):12615-12624. PubMed ID: 30536886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe
    Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.
    Mahdavi M; Ahmad MB; Haron MJ; Namvar F; Nadi B; Rahman MZ; Amin J
    Molecules; 2013 Jun; 18(7):7533-48. PubMed ID: 23807578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-polyvinylpyrrolidone Co
    Suárez J; Daboin V; González G; Briceño S
    Int J Biol Macromol; 2020 Dec; 164():3403-3410. PubMed ID: 32858107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and size-dependent exchange bias in inverted core-shell MnO|Mn3O4 nanoparticles.
    Salazar-Alvarez G; Sort J; Suriñach S; Baró MD; Nogués J
    J Am Chem Soc; 2007 Jul; 129(29):9102-8. PubMed ID: 17595081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Synthesis of Fe
    Yusefi M; Shameli K; Su Yee O; Teow SY; Hedayatnasab Z; Jahangirian H; Webster TJ; Kuča K
    Int J Nanomedicine; 2021; 16():2515-2532. PubMed ID: 33824589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells.
    Majeed J; Pradhan L; Ningthoujam RS; Vatsa RK; Bahadur D; Tyagi AK
    Colloids Surf B Biointerfaces; 2014 Oct; 122():396-403. PubMed ID: 25089699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe
    Rajan A; Sharma M; Sahu NK
    Sci Rep; 2020 Sep; 10(1):15045. PubMed ID: 32963264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
    Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis of biocompatible Fe
    Eldeeb BA; El-Raheem WMA; Elbeltagi S
    Sci Rep; 2023 Nov; 13(1):19000. PubMed ID: 37923900
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Mirković M; Radović M; Stanković D; Milanović Z; Janković D; Matović M; Jeremić M; Antić B; Vranješ-Đurić S
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():124-133. PubMed ID: 31146983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.
    Karamipour Sh; Sadjadi MS; Farhadyar N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():146-55. PubMed ID: 25879984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.
    Calatayud MP; Soler E; Torres TE; Campos-Gonzalez E; Junquera C; Ibarra MR; Goya GF
    Sci Rep; 2017 Aug; 7(1):8627. PubMed ID: 28819156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe
    Lu Q; Dai X; Zhang P; Tan X; Zhong Y; Yao C; Song M; Song G; Zhang Z; Peng G; Guo Z; Ge Y; Zhang K; Li Y
    Int J Nanomedicine; 2018; 13():2491-2505. PubMed ID: 29719396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA.
    Sohrabijam Z; Saeidifar M; Zamanian A
    Colloids Surf B Biointerfaces; 2017 Apr; 152():169-175. PubMed ID: 28110038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.