BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33122962)

  • 1. Membrane-based separation of potential emerging pollutants.
    Dharupaneedi SP; Nataraj SK; Nadagouda M; Reddy KR; Shukla SS; Aminabhavi TM
    Sep Purif Technol; 2019 Feb; 210():850-866. PubMed ID: 33122962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.
    Ochando-Pulido JM; Martinez-Ferez A
    Membranes (Basel); 2015 Sep; 5(4):513-31. PubMed ID: 26426062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes.
    Montenegro-Landívar MF; Tapia-Quirós P; Vecino X; Reig M; Granados M; Farran A; Cortina JL; Saurina J; Valderrama C
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Membrane Technologies in Dairy Industry: An Overview.
    Reig M; Vecino X; Cortina JL
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.
    Oñate E; Rodríguez E; Bórquez R; Zaror C
    Environ Technol; 2015; 36(5-8):890-900. PubMed ID: 25253193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface water filtration using granular media and membranes: A review.
    Hoslett J; Massara TM; Malamis S; Ahmad D; van den Boogaert I; Katsou E; Ahmad B; Ghazal H; Simons S; Wrobel L; Jouhara H
    Sci Total Environ; 2018 Oct; 639():1268-1282. PubMed ID: 29929294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.
    Ricci BC; Ferreira CD; Marques LS; Martins SS; Amaral MC
    Water Sci Technol; 2016; 74(2):367-74. PubMed ID: 27438241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autopsy of high-pressure membranes to compare effectiveness of MF and UF pretreatment in water reclamation.
    Kim J; DiGiano FA; Reardon RD
    Water Res; 2008 Feb; 42(3):697-706. PubMed ID: 17961627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Process for Bioenergy Production and Water Recycling in the Dairy Industry: Selection of
    Leandro MJ; Marques S; Ribeiro B; Santos H; Fonseca C
    Microorganisms; 2019 Nov; 7(11):. PubMed ID: 31717512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    J Environ Manage; 2022 Apr; 307():114555. PubMed ID: 35085965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane technologies applied to textile wastewater treatment.
    Marcucci M; Ciabatti I; Matteucci A; Vernaglione G
    Ann N Y Acad Sci; 2003 Mar; 984():53-64. PubMed ID: 12783810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review.
    Wu Y; Chen M; Lee HJ; A Ganzoury M; Zhang N; de Lannoy CF
    ACS ES T Eng; 2022 Sep; 2(9):1574-1598. PubMed ID: 36120114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.
    Hancock NT; Xu P; Heil DM; Bellona C; Cath TY
    Environ Sci Technol; 2011 Oct; 45(19):8483-90. PubMed ID: 21838294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.
    Holloway RW; Regnery J; Nghiem LD; Cath TY
    Environ Sci Technol; 2014 Sep; 48(18):10859-68. PubMed ID: 25113310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH.
    Miralles-Cuevas S; Oller I; Pérez JAS; Malato S
    Water Res; 2014 Nov; 64():23-31. PubMed ID: 25025178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.
    Kotsanopoulos KV; Arvanitoyannis IS
    Crit Rev Food Sci Nutr; 2015; 55(9):1147-75. PubMed ID: 24915344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.