These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33123216)

  • 1. Modeling the Impact of Seasonal Weather Variations on the Infectiology of Brucellosis.
    Nyerere N; Luboobi LS; Mpeshe SC; Shirima GM
    Comput Math Methods Med; 2020; 2020():8972063. PubMed ID: 33123216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission.
    Hou Q; Qin HY
    Math Biosci Eng; 2019 Apr; 16(4):3111-3129. PubMed ID: 31137253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the dynamics of brucellosis infection in bison population with vertical transmission and culling.
    Lolika PO; Modnak C; Mushayabasa S
    Math Biosci; 2018 Nov; 305():42-54. PubMed ID: 30138637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China.
    Li M; Sun G; Zhang J; Jin Z; Sun X; Wang Y; Huang B; Zheng Y
    Math Biosci Eng; 2014 Oct; 11(5):1115-37. PubMed ID: 25347802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China.
    Hou Q; Sun X; Zhang J; Liu Y; Wang Y; Jin Z
    Math Biosci; 2013 Mar; 242(1):51-8. PubMed ID: 23313258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymptotic analysis of endemic equilibrium to a brucellosis model.
    Li MT; Pei X; Zhang J; Li L
    Math Biosci Eng; 2019 Jun; 16(5):5836-5850. PubMed ID: 31499740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plague disease model with weather seasonality.
    Ngeleja RC; Luboobi LS; Nkansah-Gyekye Y
    Math Biosci; 2018 Aug; 302():80-99. PubMed ID: 29800562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Impact of Optimal Health Education Programs on the Control of Zoonotic Diseases.
    Mhlanga A
    Comput Math Methods Med; 2020; 2020():6584323. PubMed ID: 32733595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for ovine brucellosis incorporating direct and indirect transmission.
    Aïnseba B; Benosman C; Magal P
    J Biol Dyn; 2010 Jan; 4(1):2-11. PubMed ID: 22881067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reaction-diffusion malaria model with seasonality and incubation period.
    Bai Z; Peng R; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):201-228. PubMed ID: 29188365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-Based Evaluation of Strategies to Control Brucellosis in China.
    Li MT; Sun GQ; Zhang WY; Jin Z
    Int J Environ Res Public Health; 2017 Mar; 14(3):. PubMed ID: 28287496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold dynamics of a reaction-advection-diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity.
    Wu P; Salmaniw Y; Wang X
    J Math Biol; 2024 Apr; 88(6):76. PubMed ID: 38691213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical Modelling of HIV-HCV Coinfection Dynamics in Absence of Therapy.
    Mayanja E; Luboobi LS; Kasozi J; Nsubuga RN
    Comput Math Methods Med; 2020; 2020():2106570. PubMed ID: 33082837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock.
    Kamath PL; Foster JT; Drees KP; Luikart G; Quance C; Anderson NJ; Clarke PR; Cole EK; Drew ML; Edwards WH; Rhyan JC; Treanor JJ; Wallen RL; White PJ; Robbe-Austerman S; Cross PC
    Nat Commun; 2016 May; 7():11448. PubMed ID: 27165544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A periodic SEIRS epidemic model with a time-dependent latent period.
    Li F; Zhao XQ
    J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemiology and control of brucellosis in ruminants from 1986 to 1996 in Malta.
    Abela B
    Rev Sci Tech; 1999 Dec; 18(3):648-59. PubMed ID: 10588008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010-2014.
    Lou P; Wang L; Zhang X; Xu J; Wang K
    Biomed Res Int; 2016; 2016():5103718. PubMed ID: 27872852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiologic relatedness between Brucella abortus isolates from livestock and wildlife in South Korea.
    Kim JY; Her M; Kang SI; Lee K; Lee HK; Jung SC
    J Wildl Dis; 2013 Apr; 49(2):451-4. PubMed ID: 23568927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Current concepts of brucellosis as a natural-focus disease].
    Liamkin GI; Taran IF; Shchedrin VI
    Zh Mikrobiol Epidemiol Immunobiol; 1995; (2):115-8. PubMed ID: 7653125
    [No Abstract]   [Full Text] [Related]  

  • 20. Human health benefits from livestock vaccination for brucellosis: case study.
    Roth F; Zinsstag J; Orkhon D; Chimed-Ochir G; Hutton G; Cosivi O; Carrin G; Otte J
    Bull World Health Organ; 2003; 81(12):867-76. PubMed ID: 14997239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.