BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33123602)

  • 1. Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways.
    Teng R; Wang Y; Lv N; Zhang D; Williamson RA; Lei L; Chen P; Lei L; Wang B; Fu J; Liu X; He A; O'Dwyer M; Hu J
    J Immunol Res; 2020; 2020():4598476. PubMed ID: 33123602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells.
    Yusa S; Catina TL; Campbell KS
    J Immunol; 2002 May; 168(10):5047-57. PubMed ID: 11994457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SHP-2 expression negatively regulates NK cell function.
    Purdy AK; Campbell KS
    J Immunol; 2009 Dec; 183(11):7234-43. PubMed ID: 19915046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) can play a direct role in the inhibitory function of killer cell Ig-like receptors in human NK cells.
    Yusa S; Campbell KS
    J Immunol; 2003 May; 170(9):4539-47. PubMed ID: 12707331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired natural killing of MHC class I-deficient targets by NK cells expressing a catalytically inactive form of SHP-1.
    Lowin-Kropf B; Kunz B; Beermann F; Held W
    J Immunol; 2000 Aug; 165(3):1314-21. PubMed ID: 10903732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.
    Matalon O; Fried S; Ben-Shmuel A; Pauker MH; Joseph N; Keizer D; Piterburg M; Barda-Saad M
    Sci Signal; 2016 May; 9(429):ra54. PubMed ID: 27221712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined inhibition of JAK1,2/Stat3‑PD‑L1 signaling pathway suppresses the immune escape of castration‑resistant prostate cancer to NK cells in hypoxia.
    Xu LJ; Ma Q; Zhu J; Li J; Xue BX; Gao J; Sun CY; Zang YC; Zhou YB; Yang DR; Shan YX
    Mol Med Rep; 2018 Jun; 17(6):8111-8120. PubMed ID: 29693186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC.
    Balsamo M; Manzini C; Pietra G; Raggi F; Blengio F; Mingari MC; Varesio L; Moretta L; Bosco MC; Vitale M
    Eur J Immunol; 2013 Oct; 43(10):2756-64. PubMed ID: 23913266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAT3 directly regulates NKp46 transcription in NK cells of HBeAg-negative CHB patients.
    Zheng B; Yang Y; Han Q; Yin C; Pan Z; Zhang J
    J Leukoc Biol; 2019 Oct; 106(4):987-996. PubMed ID: 31132315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional capacity of natural killer cells in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients.
    Queiroz GAN; Mascarenhas REM; Vieillard V; Andrade RL; Galvão-Castro B; Grassi MFR
    BMC Infect Dis; 2019 May; 19(1):433. PubMed ID: 31101076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30 receptor-dependent cytotoxicity of natural killer cells.
    Binici J; Hartmann J; Herrmann J; Schreiber C; Beyer S; Güler G; Vogel V; Tumulka F; Abele R; Mäntele W; Koch J
    J Biol Chem; 2013 Nov; 288(48):34295-303. PubMed ID: 24133212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SHP-1 phosphatase is a critical regulator in preventing natural killer cell self-killing.
    Mahmood S; Kanwar N; Tran J; Zhang ML; Kung SK
    PLoS One; 2012; 7(8):e44244. PubMed ID: 22952938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-CD20 Therapy Acts via FcγRIIIA to Diminish Responsiveness of Human Natural Killer Cells.
    Capuano C; Romanelli M; Pighi C; Cimino G; Rago A; Molfetta R; Paolini R; Santoni A; Galandrini R
    Cancer Res; 2015 Oct; 75(19):4097-108. PubMed ID: 26229120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KIR2DL5 can inhibit human NK cell activation via recruitment of Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2).
    Yusa S; Catina TL; Campbell KS
    J Immunol; 2004 Jun; 172(12):7385-92. PubMed ID: 15187115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase.
    Nakamura MC; Niemi EC; Fisher MJ; Shultz LD; Seaman WE; Ryan JC
    J Exp Med; 1997 Feb; 185(4):673-84. PubMed ID: 9034146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatitis C virus impairs natural killer cell activity via viral serine protease NS3.
    Yang CM; Yoon JC; Park JH; Lee JM
    PLoS One; 2017; 12(4):e0175793. PubMed ID: 28410411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells.
    Liu CY; Su JC; Ni MH; Tseng LM; Chu PY; Wang DS; Tai WT; Kao YP; Hung MH; Shiau CW; Chen KF
    Breast Cancer Res Treat; 2014 Jul; 146(1):71-84. PubMed ID: 24903225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human leukocyte antigen-G1 inhibits natural killer cytotoxicity through blocking the activating signal transduction pathway and formation of activating immunologic synapse.
    Yu Y; Wang Y; Feng M
    Hum Immunol; 2008 Jan; 69(1):16-23. PubMed ID: 18295671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand binding to inhibitory killer cell Ig-like receptors induce colocalization with Src homology domain 2-containing protein tyrosine phosphatase 1 and interruption of ongoing activation signals.
    Vyas YM; Maniar H; Lyddane CE; Sadelain M; Dupont B
    J Immunol; 2004 Aug; 173(3):1571-8. PubMed ID: 15265884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles.
    Ponath V; Hoffmann N; Bergmann L; Mäder C; Alashkar Alhamwe B; Preußer C; Pogge von Strandmann E
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.