BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 33123827)

  • 1. DXA-based statistical models of shape and intensity outperform aBMD hip fracture prediction: A retrospective study.
    Aldieri A; Paggiosi M; Eastell R; Bignardi C; Audenino AL; Bhattacharya P; Terzini M
    Bone; 2024 May; 182():117051. PubMed ID: 38382701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new hip fracture risk index derived from FEA-computed proximal femur fracture loads and energies-to-failure.
    Cao X; Keyak JH; Sigurdsson S; Zhao C; Zhou W; Liu A; Lang TF; Deng HW; Gudnason V; Sha Q
    Osteoporos Int; 2024 May; 35(5):785-794. PubMed ID: 38246971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabetes is associated with a lower minimum moment of inertia among older women: An analysis of 3D reconstructions of clinical CT scans.
    Heckelman LN; Wesorick BR; DeFrate LE; Lee RH
    J Biomech; 2021 Nov; 128():110707. PubMed ID: 34488049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subregional statistical shape modelling identifies lesser trochanter size as a possible risk factor for radiographic hip osteoarthritis, a cross-sectional analysis from the Osteoporotic Fractures in Men Study.
    Faber BG; Bredbenner TL; Baird D; Gregory J; Saunders F; Giuraniuc CV; Aspden RM; Lane NE; Orwoll E; Tobias JH;
    Osteoarthritis Cartilage; 2020 Aug; 28(8):1071-1078. PubMed ID: 32387760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of clinical and stochastic finite element data for hip fracture risk prediction.
    Jiang P; Missoum S; Chen Z
    J Biomech; 2015 Nov; 48(15):4043-4052. PubMed ID: 26482733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific finite element analysis for assessing hip fracture risk in aging populations.
    K N C; Schmidt Genannt Waldschmidt N; Corda JV; Shenoy B S; Shetty S; Keni LG; Bhat N S; Nikam N; Mihcin S
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38437729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians?: Towards computational modelling in daily clinical practice.
    Eggermont F; Derikx LC; Verdonschot N; van der Geest ICM; de Jong MAA; Snyers A; van der Linden YM; Tanck E
    Bone Joint Res; 2018 Jun; 7(6):430-439. PubMed ID: 30034797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CT and MRI Assessment and Characterization Using Segmentation and 3D Modeling Techniques: Applications to Muscle, Bone and Brain.
    Gargiulo P; Helgason T; Ramon C; Jónsson H; Carraro U
    Eur J Transl Myol; 2014 Mar; 24(1):3298. PubMed ID: 26913129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of statistical shape modeling to the human hip joint: a scoping review.
    Johnson LG; Bortolussi-Courval S; Chehil A; Schaeffer EK; Pawliuk C; Wilson DR; Mulpuri K
    JBI Evid Synth; 2023 Mar; 21(3):533-583. PubMed ID: 36705052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk modeling of femoral neck fracture based on geometric parameters of the proximal epiphysis.
    Shitova AD; Kovaleva ON; Olsufieva AV; Gadzhimuradova IA; Zubkov DD; Kniazev MO; Zharikova TS; Zharikov YO
    World J Orthop; 2022 Aug; 13(8):733-743. PubMed ID: 36159625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Three-dimensional morphological study of the effect of false acetabulum on the femoral structure in Crowe type
    Liao W; Yang Y; Liao L; Ma Y; Zheng Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Jun; 36(6):714-721. PubMed ID: 35712929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Hip Fracture Risk Prediction with a Statistical Shape-and-Intensity Model of the Proximal Femur.
    Aldieri A; Bhattacharya P; Paggiosi M; Eastell R; Audenino AL; Bignardi C; Morbiducci U; Terzini M
    Ann Biomed Eng; 2022 Feb; 50(2):211-221. PubMed ID: 35044572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Assessment of Bone Fragility from Clinical Images.
    Schileo E; Taddei F
    Curr Osteoporos Rep; 2021 Dec; 19(6):688-698. PubMed ID: 34931294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical Shape and Appearance Models: Development Towards Improved Osteoporosis Care.
    Grassi L; Väänänen SP; Isaksson H
    Curr Osteoporos Rep; 2021 Dec; 19(6):676-687. PubMed ID: 34773211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Analysis of the Proximal Femur Compared to 2D Analysis for Hip Fracture Risk Prediction in a Clinical Population.
    Jazinizadeh F; Quenneville CE
    Ann Biomed Eng; 2021 Apr; 49(4):1222-1232. PubMed ID: 33123827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip.
    Grassi L; Fleps I; Sahlstedt H; Väänänen SP; Ferguson SJ; Isaksson H; Helgason B
    Bone; 2021 Jan; 142():115678. PubMed ID: 33022451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced 2D image processing technique to predict hip fracture risk in an older population based on single DXA scans.
    Jazinizadeh F; Adachi JD; Quenneville CE
    Osteoporos Int; 2020 Oct; 31(10):1925-1933. PubMed ID: 32415372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are CT-Based Finite Element Model Predictions of Femoral Bone Strength Clinically Useful?
    Viceconti M; Qasim M; Bhattacharya P; Li X
    Curr Osteoporos Rep; 2018 Jun; 16(3):216-223. PubMed ID: 29656377
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.