BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33124360)

  • 1. [Acid Mine Wasteland Reclamation by
    Huang JH; Fu JL; Yan XR; Yin F; Tian SL; Ning P; Li YJ
    Huan Jing Ke Xue; 2020 Aug; 41(8):3829-3835. PubMed ID: 33124360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.
    Yang SX; Liao B; Li JT; Guo T; Shu WS
    Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China.
    Liu K; Zhang H; Liu Y; Li Y; Yu F
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19933-19945. PubMed ID: 32232756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Investigation of Dominant Plants and Analysis of Ecological Restoration Potential in Lailishan Tin Tailings].
    Qin FR; Zhang SY; Xia YS; Zhang NM; Wu CL; He ZJ; Yue XR; Tian SL
    Huan Jing Ke Xue; 2021 Aug; 42(8):3963-3970. PubMed ID: 34309283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of acid mine drainage sludge as soil substitute for the reclamation of mine solid wastes.
    Chi Y; Lin Q; Zhuang R; Xiong M; Ye Z
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21184-21197. PubMed ID: 34755294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice.
    Li MS
    Sci Total Environ; 2006 Mar; 357(1-3):38-53. PubMed ID: 15992864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.
    Shen ZJ; Xu C; Chen YS; Zhang Z
    Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China.
    Zhu G; Xiao H; Guo Q; Song B; Zheng G; Zhang Z; Zhao J; Okoli CP
    Ecotoxicol Environ Saf; 2018 Apr; 151():266-271. PubMed ID: 29407559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects.
    Dusengemungu L; Mubemba B; Gwanama C
    Sci Rep; 2022 Jul; 12(1):11283. PubMed ID: 35787645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China.
    Yakun S; Xingmin M; Kairong L; Hongbo S
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13489-97. PubMed ID: 27025220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.
    Sun X; Zhou Y; Tan Y; Wu Z; Lu P; Zhang G; Yu F
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22106-22119. PubMed ID: 29802615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different vegetation on copper accumulation of copper-mine abandoned land in tongling, China.
    Wang R; Zhang J; Sun H; Sun S; Qin G; Song Y
    J Environ Manage; 2021 May; 286():112227. PubMed ID: 33647673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China.
    Gao Y; Liu H; Liu G
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25416-25430. PubMed ID: 28932981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil.
    Baycu G; Tolunay D; Ozden H; Csatari I; Karadag S; Agba T; Rognes SE
    Int J Phytoremediation; 2015; 17(7):622-31. PubMed ID: 25976876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize (Zea mays L.) performance in organically amended mine site soils.
    Oladipo OG; Olayinka A; Awotoye OO
    J Environ Manage; 2016 Oct; 181():435-442. PubMed ID: 27415409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.