These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33124660)

  • 1. Prediction of single-cell gene expression for transcription factor analysis.
    Behjati Ardakani F; Kattler K; Heinen T; Schmidt F; Feuerborn D; Gasparoni G; Lepikhov K; Nell P; Hengstler J; Walter J; Schulz MH
    Gigascience; 2020 Oct; 9(11):. PubMed ID: 33124660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Suppl 1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 5. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome.
    Karimzadeh M; Hoffman MM
    Genome Biol; 2022 Jun; 23(1):126. PubMed ID: 35681170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction.
    Yi R; Cho K; Bonneau R
    Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data.
    Yang TH; Wu WS
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.