These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Probing transcription factor combinatorics in different promoter classes and in enhancers. Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337 [TBL] [Abstract][Full Text] [Related]
6. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606 [TBL] [Abstract][Full Text] [Related]
7. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545 [TBL] [Abstract][Full Text] [Related]
8. Improved linking of motifs to their TFs using domain information. Baumgarten N; Schmidt F; Schulz MH Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324 [TBL] [Abstract][Full Text] [Related]
9. Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome. Karimzadeh M; Hoffman MM Genome Biol; 2022 Jun; 23(1):126. PubMed ID: 35681170 [TBL] [Abstract][Full Text] [Related]
10. NetTIME: a multitask and base-pair resolution framework for improved transcription factor binding site prediction. Yi R; Cho K; Bonneau R Bioinformatics; 2022 Oct; 38(20):4762-4770. PubMed ID: 35997560 [TBL] [Abstract][Full Text] [Related]
11. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example. Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277 [TBL] [Abstract][Full Text] [Related]
12. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223 [TBL] [Abstract][Full Text] [Related]
14. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Kähärä J; Lähdesmäki H Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350 [TBL] [Abstract][Full Text] [Related]
15. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. Zhang L; Xue G; Liu J; Li Q; Wang Y BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100 [TBL] [Abstract][Full Text] [Related]
16. The next generation of transcription factor binding site prediction. Mathelier A; Wasserman WW PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567 [TBL] [Abstract][Full Text] [Related]
17. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets. Ha N; Polychronidou M; Lohmann I PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209 [TBL] [Abstract][Full Text] [Related]
19. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data. Yang TH; Wu WS BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265 [TBL] [Abstract][Full Text] [Related]
20. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. Kuznetsov VA; Singh O; Jenjaroenpun P BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]