These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33124660)

  • 41. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis.
    Schmidt F; Kern F; Ebert P; Baumgarten N; Schulz MH
    Bioinformatics; 2019 May; 35(9):1608-1609. PubMed ID: 30304373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.
    Goi C; Little P; Xie C
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response.
    Xie X; Hanson C; Sinha S
    BMC Biol; 2019 Jul; 17(1):62. PubMed ID: 31362726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo.
    Xu T; Li B; Zhao M; Szulwach KE; Street RC; Lin L; Yao B; Zhang F; Jin P; Wu H; Qin ZS
    Nucleic Acids Res; 2015 Mar; 43(5):2757-66. PubMed ID: 25722376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MTTFsite: cross-cell type TF binding site prediction by using multi-task learning.
    Zhou J; Lu Q; Gui L; Xu R; Long Y; Wang H
    Bioinformatics; 2019 Dec; 35(24):5067-5077. PubMed ID: 31161194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying transcription factors with cell-type specific DNA binding signatures.
    Awdeh A; Turcotte M; Perkins TJ
    BMC Genomics; 2024 Oct; 25(1):957. PubMed ID: 39402535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. xcore: an R package for inference of gene expression regulators.
    MigdaƂ M; Arakawa T; Takizawa S; Furuno M; Suzuki H; Arner E; Winata CL; Kaczkowski B
    BMC Bioinformatics; 2023 Jan; 24(1):14. PubMed ID: 36631751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using methylation data to improve transcription factor binding prediction.
    Morgan D; DeMeo DL; Glass K
    Epigenetics; 2024 Dec; 19(1):2309826. PubMed ID: 38300850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MORA and EnsembleTFpredictor: An ensemble approach to reveal functional transcription factor regulatory networks.
    Boyer K; Li L; Li T; Zhang B; Zhao G
    PLoS One; 2023; 18(11):e0294724. PubMed ID: 38032891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
    Huang J; Zheng J; Yuan H; McGinnis K
    BMC Plant Biol; 2018 Jun; 18(1):111. PubMed ID: 29879919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.
    Chen CC; Xiao S; Xie D; Cao X; Song CX; Wang T; He C; Zhong S
    PLoS Comput Biol; 2013; 9(12):e1003367. PubMed ID: 24339764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The adapted Activity-By-Contact model for enhancer-gene assignment and its application to single-cell data.
    Hecker D; Behjati Ardakani F; Karollus A; Gagneur J; Schulz MH
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36708003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the problem of confounders in modeling gene expression.
    Schmidt F; Schulz MH
    Bioinformatics; 2019 Feb; 35(4):711-719. PubMed ID: 30084962
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The functional consequences of variation in transcription factor binding.
    Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TFregulomeR reveals transcription factors' context-specific features and functions.
    Lin QXX; Thieffry D; Jha S; Benoukraf T
    Nucleic Acids Res; 2020 Jan; 48(2):e10. PubMed ID: 31754708
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation.
    Minto MS; Sotelo-Fonseca JE; Ramesh V; West AE
    BMC Biol; 2024 Sep; 22(1):189. PubMed ID: 39218853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.