These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33124737)

  • 1. Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazoline-Polyethyleneimine Copolymers.
    Kozon D; Bednarczyk P; Szewczyk A; Jańczewski D
    Chembiochem; 2021 Mar; 22(6):1020-1029. PubMed ID: 33124737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic Polymethyloxazoline-Polyethyleneimine Copolymers: Interaction with Lipid Bilayer and Antibacterial Properties.
    Kozon D; Mierzejewska J; Kobiela T; Grochowska A; Dudnyk K; Głogowska A; Sobiepanek A; Kuźmińska A; Ciach T; Augustynowicz-Kopeć E; Jańczewski D
    Macromol Biosci; 2019 Dec; 19(12):e1900254. PubMed ID: 31747130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes.
    Werner M; Sommer JU
    Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes.
    Lang C; Ye D; Song W; Yao C; Tu YM; Capparelli C; LaNasa JA; Hickner MA; Gomez EW; Gomez ED; Hickey RJ; Kumar M
    ACS Nano; 2019 Jul; 13(7):8292-8302. PubMed ID: 31251576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers.
    Salay LC; Procopio J; Oliveira E; Nakaie CR; Schreier S
    FEBS Lett; 2004 May; 565(1-3):171-5. PubMed ID: 15135074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers.
    Saint N; Marri L; Marchini D; Molle G
    Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers.
    Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N
    Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interaction of a new antibacterial polymer with a supported lipid bilayer measured by an in situ label-free optical technique.
    Horvath R; Kobzi B; Keul H; Moeller M; Kiss E
    Int J Mol Sci; 2013 May; 14(5):9722-36. PubMed ID: 23648479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability.
    Pannwitt S; Kaltbeitzel J; Ahlers P; Spitzer D; Hellmann N; Depoix F; Besenius P; Schneider D
    Biochemistry; 2020 May; 59(19):1845-1853. PubMed ID: 32320213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties.
    Lucaciu M; Rebuffat S; Goulard C; Duclohier H; Molle G; Bodo B
    Biochim Biophys Acta; 1997 Jan; 1323(1):85-96. PubMed ID: 9030215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of ion channels in planar lipid bilayer membranes by synthetic basic peptides.
    Anzai K; Hamasuna M; Kadono H; Lee S; Aoyagi H; Kirino Y
    Biochim Biophys Acta; 1991 May; 1064(2):256-66. PubMed ID: 1709812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL).
    Kozon-Markiewicz D; Kopiasz RJ; Głusiec M; Łukasiak A; Bednarczyk P; Jańczewski D
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113480. PubMed ID: 37536168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bright ion channels and lipid bilayers.
    Szymański W; Yilmaz D; Koçer A; Feringa BL
    Acc Chem Res; 2013 Dec; 46(12):2910-23. PubMed ID: 23597020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes.
    Prenner EJ; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):201-21. PubMed ID: 10590309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S; Shirai O; Kitazumi Y; Kano K
    Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers.
    Saint N; Cadiou H; Bessin Y; Molle G
    Biochim Biophys Acta; 2002 Aug; 1564(2):359-64. PubMed ID: 12175918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic polymers inhibit the conductance of lysenin channels.
    Fologea D; Krueger E; Rossland S; Bryant S; Foss W; Clark T
    ScientificWorldJournal; 2013; 2013():316758. PubMed ID: 24191139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings.
    Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS
    J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.