These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46 related articles for article (PubMed ID: 3312479)
1. Uptake of Ca2+ driven by the membrane potential in energy-depleted yeast cells. Eilam Y; Chernichovsky D J Gen Microbiol; 1987 Jun; 133(6):1641-9. PubMed ID: 3312479 [TBL] [Abstract][Full Text] [Related]
2. Activation of Ca2+ influx by metabolic substrates in Saccharomyces cerevisiae: role of membrane potential and cellular ATP levels. Eilam Y; Othman M J Gen Microbiol; 1990 May; 136(5):861-6. PubMed ID: 2199605 [TBL] [Abstract][Full Text] [Related]
3. Transient increase in Ca2+ influx in Saccharomyces cerevisiae in response to glucose: effects of intracellular acidification and cAMP levels. Eilam Y; Othman M; Halachmi D J Gen Microbiol; 1990 Dec; 136(12):2537-43. PubMed ID: 1964173 [TBL] [Abstract][Full Text] [Related]
4. Polyamine transport regulation by calcium and calmodulin: role of Ca(2+)-ATPase. Khan NA; Sezan A; Quemener V; Moulinoux JP J Cell Physiol; 1993 Dec; 157(3):493-501. PubMed ID: 8253860 [TBL] [Abstract][Full Text] [Related]
5. Active extrusion of potassium in the yeast Saccharomyces cerevisiae induced by low concentrations of trifluoperazine. Eilam Y; Lavi H; Grossowicz N J Gen Microbiol; 1985 Oct; 131(10):2555-64. PubMed ID: 3906026 [TBL] [Abstract][Full Text] [Related]
6. The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation. Krystofová S; Varecka L; Betina V Gen Physiol Biophys; 1995 Aug; 14(4):323-7. PubMed ID: 8720696 [TBL] [Abstract][Full Text] [Related]
7. Effects of trifluoperazine and membrane-bound sialic acid on 45Ca2+ uptake into erythrocytes. Günther T; Höllriegl V; Fehlinger R J Trace Elem Electrolytes Health Dis; 1988 Mar; 2(1):15-8. PubMed ID: 2980786 [TBL] [Abstract][Full Text] [Related]
8. Membrane effects of phenothiazines in yeasts. I. Stimulation of calcium and potassium fluxes. Eilam Y Biochim Biophys Acta; 1983 Sep; 733(2):242-8. PubMed ID: 6136300 [TBL] [Abstract][Full Text] [Related]
9. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma]. Babich LG; Fomin VP; Kosterin SA Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629 [TBL] [Abstract][Full Text] [Related]
10. Characterization of interactions of methylmercury with Ca2+ channels in synaptosomes and pheochromocytoma cells: radiotracer flux and binding studies. Shafer TJ; Contreras ML; Atchison WD Mol Pharmacol; 1990 Jul; 38(1):102-13. PubMed ID: 2164628 [TBL] [Abstract][Full Text] [Related]
11. Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum. Mandal PK; Mandal A; Ahearn GA J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):515-26. PubMed ID: 15945071 [TBL] [Abstract][Full Text] [Related]
12. [Relation between the passive transport of calcium into vesicles of the myocardial sarcolemma and membrane potential]. Kocherga VI; Nesterenko NV; Vorobets ZD; Kurchenko LK; Kurskiĭ MD Ukr Biokhim Zh (1978); 1987; 59(1):61-6. PubMed ID: 2433825 [TBL] [Abstract][Full Text] [Related]
13. [Effect of sodium gradient on calcium uptake by plasma membranes of the myometrium]. Bratkova NF; Kurskii MD; Kosterin SA Biokhimiia; 1982 Jun; 47(6):1015-21. PubMed ID: 6810956 [TBL] [Abstract][Full Text] [Related]
14. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells. Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714 [TBL] [Abstract][Full Text] [Related]
16. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx. Simonsen LO; Harbak H; Bennekou P Blood Cells Mol Dis; 2011 Dec; 47(4):214-25. PubMed ID: 21962619 [TBL] [Abstract][Full Text] [Related]
17. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin. Henquin JC; Meissner HP Endocrinology; 1984 Sep; 115(3):1125-34. PubMed ID: 6086286 [TBL] [Abstract][Full Text] [Related]
18. Transport and control of Ca2+ by pigeon erythrocytes. II. Evidence against a simple feedback control of cell Ca2+ and evidence for the involvement of more than one pool. Lee JW; Vidaver GA Cell Calcium; 1984 Dec; 5(6):525-36. PubMed ID: 6098374 [TBL] [Abstract][Full Text] [Related]
19. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels. Taglialatela M; Di Renzo G; Annunziato L Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of action of inhibitors of prolactin secretion in GH3 pituitary cells. II. Blockade of voltage-dependent Ca2+ channels. Wolfe SE; Brostrom MA Mol Pharmacol; 1986 Apr; 29(4):420-6. PubMed ID: 2422534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]