These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33124826)

  • 1. Gas-Phase Resonance Raman Spectroscopy Combined with IR-Laser Ablation of a Droplet Beam: Local Structural Analysis of Myoglobin.
    Asami H; Kitazaki A; Kawauchi N; Kohno JY
    J Phys Chem A; 2020 Nov; 124(45):9464-9469. PubMed ID: 33124826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe vibrational spectroscopy of myoglobin and cytochrome f.
    Adams KL; Tsoi S; Yan J; Durbin SM; Ramdas AK; Cramer WA; Sturhahn W; Alp EE; Schulz C
    J Phys Chem B; 2006 Jan; 110(1):530-6. PubMed ID: 16471565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge state of lysozyme molecules in the gas phase produced by IR-laser ablation of droplet beam.
    Kohno JY; Nabeta K; Sasaki N
    J Phys Chem A; 2013 Jan; 117(1):9-14. PubMed ID: 23234475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.
    Melchers B; Knapp EW; Parak F; Cordone L; Cupane A; Leone M
    Biophys J; 1996 May; 70(5):2092-9. PubMed ID: 9172733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin Crossover in Nitrito-Myoglobin as Revealed by Resonance Raman Spectroscopy.
    Lambrou A; Ioannou A; Pinakoulaki E
    Chemistry; 2016 Aug; 22(34):12176-80. PubMed ID: 27417111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unequivocal determination of metal atom oxidation state in naked heme proteins: Fe(III)myoglobin, Fe(III)cytochrome c, Fe(III)cytochrome b5, and Fe(III)cytochrome b5 L47R.
    He F; Hendrickson CL; Marshall AG
    J Am Soc Mass Spectrom; 2000 Feb; 11(2):120-6. PubMed ID: 10689664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A photolysis-triggered heme ligand switch in H93G myoglobin.
    Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG
    Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond infrared spectroscopy of hemoglobin and myoglobin.
    Austin RH; Rothberg LJ
    Methods Enzymol; 1994; 232():176-204. PubMed ID: 8057860
    [No Abstract]   [Full Text] [Related]  

  • 9. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein conformation change of myoglobin upon ligand binding probed by ultraviolet resonance Raman spectroscopy.
    Haruta N; Aki M; Ozaki S; Watanabe Y; Kitagawa T
    Biochemistry; 2001 Jun; 40(23):6956-63. PubMed ID: 11389611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic characterization of heme A reconstituted myoglobin.
    Larsen RW; Nunez DJ; MacLeod J; Shiemke AK; Musser SM; Nguyen HH; Ondrias MR; Chan SI
    J Inorg Biochem; 1992 Oct; 48(1):21-31. PubMed ID: 1326598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on the proximal heme pocket in myoglobin probed by Raman and near-infrared absorption spectroscopy.
    Galkin O; Buchter S; Tabirian A; Schulte A
    Biophys J; 1997 Nov; 73(5):2752-63. PubMed ID: 9370469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemistry and Raman spectroscopy of sol-gel-encapsulated myoglobin.
    Ray A; Feng M; Tachikawa H
    Langmuir; 2005 Aug; 21(16):7456-60. PubMed ID: 16042479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway of information transmission from heme to protein upon ligand binding/dissociation in myoglobin revealed by UV resonance raman spectroscopy.
    Gao Y; El-Mashtoly SF; Pal B; Hayashi T; Harada K; Kitagawa T
    J Biol Chem; 2006 Aug; 281(34):24637-46. PubMed ID: 16774917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-phase hydration of the lysozyme ion produced by infrared-laser ablation of a droplet beam studied by photodissociation and fluorescence spectroscopy.
    Asami H; Kawauchi N; Kohno JY
    J Mass Spectrom; 2021 Apr; 56(4):e4620. PubMed ID: 32721078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of altered protein-heme interactions on the resonance Raman spectra of heme proteins. Studies of heme rotational disorder.
    Rwere F; Mak PJ; Kincaid JR
    Biopolymers; 2008 Mar; 89(3):179-86. PubMed ID: 18008322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Protein Molecule Isolation by IR Laser Ablation of Droplet Beam.
    Komatsu K; Nirasawa T; Hoshino-Nagasaka M; Kohno JY
    J Phys Chem A; 2016 Mar; 120(9):1495-500. PubMed ID: 26903000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics in the heme geometry of myoglobin induced by the one-electron reduction.
    Choi J; Tojo S; Fujitsuka M; Majima T
    Int J Radiat Biol; 2014 Jun; 90(6):459-67. PubMed ID: 24350916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.