These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33125252)

  • 1. Layer Edge States Stabilized by Internal Electric Fields in Two-Dimensional Hybrid Perovskites.
    Hong J; Prendergast D; Tan LZ
    Nano Lett; 2021 Jan; 21(1):182-188. PubMed ID: 33125252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Electronic Structure in Layered Hybrid Perovskites with Organic Spacer Substitution.
    Leveillee J; Katan C; Even J; Ghosh D; Nie W; Mohite AD; Tretiak S; Schleife A; Neukirch AJ
    Nano Lett; 2019 Dec; 19(12):8732-8740. PubMed ID: 31675242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Organic-Inorganic Hybrid Perovskites: A New Platform for Optoelectronic Applications.
    Hu J; Yan L; You W
    Adv Mater; 2018 Nov; 30(48):e1802041. PubMed ID: 30199108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Polycyclic Aromatic Alkylammonium Cations in Tuning the Electronic Properties and Band Alignment of Two-Dimensional Hybrid Perovskite Semiconductors.
    Han D; Chen S; Du MH
    J Phys Chem Lett; 2021 Oct; 12(40):9754-9760. PubMed ID: 34592105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic cations promote exciton dissociation in Ruddlesden-Popper lead iodide perovskites: a theoretical study.
    Tan X; Feng Q; Nan G
    Mater Horiz; 2024 May; 11(9):2248-2257. PubMed ID: 38436053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites.
    Blancon JC; Tsai H; Nie W; Stoumpos CC; Pedesseau L; Katan C; Kepenekian M; Soe CM; Appavoo K; Sfeir MY; Tretiak S; Ajayan PM; Kanatzidis MG; Even J; Crochet JJ; Mohite AD
    Science; 2017 Mar; 355(6331):1288-1292. PubMed ID: 28280250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layer-edge device of two-dimensional hybrid perovskites.
    Cheng B; Li TY; Wei PC; Yin J; Ho KT; Retamal JRD; Mohammed OF; He JH
    Nat Commun; 2018 Dec; 9(1):5196. PubMed ID: 30518919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Emission Induced by Band-Edge Carrier Reconfiguration in 2D Hybrid Lead Halide Perovskites.
    Li ZG; Dong XH; Song HP; Huang SS; Hu H; Li W; Yu MH; Even J; Bu XH
    Small Methods; 2024 Apr; ():e2301662. PubMed ID: 38634221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Understanding of Efficient Photocatalytic H
    Wang H; Zhang H; Wang J; Gao Y; Fan F; Wu K; Zong X; Li C
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7376-7381. PubMed ID: 33590614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically thin two-dimensional hybrid perovskites using hydrophobic superalkali cations with tunable electron transition type.
    Zhou T; Shao B
    Phys Chem Chem Phys; 2023 Oct; 25(40):27409-27416. PubMed ID: 37794817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable exciton binding energy in 2D hybrid layered perovskites through donor-acceptor interactions within the organic layer.
    Passarelli JV; Mauck CM; Winslow SW; Perkinson CF; Bard JC; Sai H; Williams KW; Narayanan A; Fairfield DJ; Hendricks MP; Tisdale WA; Stupp SI
    Nat Chem; 2020 Aug; 12(8):672-682. PubMed ID: 32632185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Design of Two-Dimensional Perovskites with Functional Organic Cations.
    Maheshwari S; Savenije TJ; Renaud N; Grozema FC
    J Phys Chem C Nanomater Interfaces; 2018 Aug; 122(30):17118-17122. PubMed ID: 30093930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Edge Stress in Molecularly Thin Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites and Modulations of Their Edge Electronic Properties.
    Kripalani DR; Cai Y; Lou J; Zhou K
    ACS Nano; 2022 Jan; 16(1):261-270. PubMed ID: 34978421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Photovoltaic Materials Based on the Superlattice Structures of Organic-Inorganic Halide Perovskite and Superhalogen Hybrid Perovskite.
    Li D; Li D; Zhang H; Yang A; Liang C
    J Phys Chem Lett; 2020 Jul; 11(13):5282-5294. PubMed ID: 32531164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitized Molecular Triplet and Triplet Excimer Emission in Two-Dimensional Hybrid Perovskites.
    Tian Y; Li Y; Chen B; Lai R; He S; Luo X; Han Y; Wei Y; Wu K
    J Phys Chem Lett; 2020 Mar; 11(6):2247-2255. PubMed ID: 32119553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating.
    Guo S; Li Y; Mao Y; Tao W; Bu K; Fu T; Zhao C; Luo H; Hu Q; Zhu H; Shi E; Yang W; Dou L; Lü X
    Sci Adv; 2022 Nov; 8(44):eadd1984. PubMed ID: 36322656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Electronic Property Relationships of 2D Ruddlesden-Popper Tin- and Lead-based Iodide Perovskites.
    Zibouche N; Islam MS
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15328-15337. PubMed ID: 32159945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular Band Alignment and Spin-Orbit Coupling in Two-Dimensional Halide Perovskites.
    Zhang L; Zhang X; Lu G
    J Phys Chem Lett; 2020 Sep; 11(17):6982-6989. PubMed ID: 32787199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites.
    Sun Q; Zhao C; Yin Z; Wang S; Leng J; Tian W; Jin S
    J Am Chem Soc; 2021 Nov; 143(45):19128-19136. PubMed ID: 34730344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Excitonic Magneto-Optic Effects in Two-Dimensional Organic-Inorganic Hybrid Perovskites.
    Chen TP; Lin JX; Lin CC; Lin CY; Ke WC; Wang DY; Hsu HS; Chen CC; Chen CW
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10279-10286. PubMed ID: 33599486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.