These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 33125348)
1. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods. Nguyen D; Macchi P; Volkov A Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):630-651. PubMed ID: 33125348 [TBL] [Abstract][Full Text] [Related]
2. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. II. Evaluation of the properties in an infinite crystal. Weatherly J; Macchi P; Volkov A Acta Crystallogr A Found Adv; 2021 Sep; 77(Pt 5):399-419. PubMed ID: 34473095 [TBL] [Abstract][Full Text] [Related]
3. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. I. The Löwdin α-function method. Nguyen D; Kisiel Z; Volkov A Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):524-536. PubMed ID: 30182939 [TBL] [Abstract][Full Text] [Related]
4. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. II. The Fourier transform method. Nguyen D; Volkov A Acta Crystallogr A Found Adv; 2019 May; 75(Pt 3):448-464. PubMed ID: 31041901 [TBL] [Abstract][Full Text] [Related]
5. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning. Volkov A; Coppens P J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105 [TBL] [Abstract][Full Text] [Related]
6. Interplay of point multipole moments and charge penetration for intermolecular electrostatic interaction energies from the University at Buffalo pseudoatom databank model of electron density. Bojarowski SA; Kumar P; Dominiak PM Acta Crystallogr B Struct Sci Cryst Eng Mater; 2017 Aug; 73(Pt 4):598-609. PubMed ID: 28762970 [TBL] [Abstract][Full Text] [Related]
7. A rush to explore protein-ligand electrostatic interaction energy with Charger. Vuković V; Leduc T; Jelić-Matošević Z; Didierjean C; Favier F; Guillot B; Jelsch C Acta Crystallogr D Struct Biol; 2021 Oct; 77(Pt 10):1292-1304. PubMed ID: 34605432 [TBL] [Abstract][Full Text] [Related]
8. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. Volkov A; King HF; Coppens P; Farrugia LJ Acta Crystallogr A; 2006 Sep; 62(Pt 5):400-8. PubMed ID: 16926487 [TBL] [Abstract][Full Text] [Related]
9. A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers. Kumar P; Bojarowski SA; Jarzembska KN; Domagała S; Vanommeslaeghe K; Mackerell AD; Dominiak PM J Chem Theory Comput; 2014 Apr; 10(4):1652-1664. PubMed ID: 24803869 [TBL] [Abstract][Full Text] [Related]
10. The interplay between experiment and theory in charge-density analysis. Coppens P; Volkov A Acta Crystallogr A; 2004 Sep; 60(Pt 5):357-64. PubMed ID: 15477672 [TBL] [Abstract][Full Text] [Related]
11. Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases. Bąk JM; Domagała S; Hübschle C; Jelsch C; Dittrich B; Dominiak PM Acta Crystallogr A; 2011 Mar; 67(Pt 2):141-53. PubMed ID: 21325717 [TBL] [Abstract][Full Text] [Related]
12. Density- and wavefunction-normalized Cartesian spherical harmonics for l ≤ 20. Michael JR; Volkov A Acta Crystallogr A Found Adv; 2015 Mar; 71(Pt 2):245-9. PubMed ID: 25727874 [TBL] [Abstract][Full Text] [Related]
13. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems. Fukuda I; Kamiya N; Nakamura H J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538 [TBL] [Abstract][Full Text] [Related]
14. Notes on "Ewald summation of electrostatic multipole interactions up to quadrupolar level" [J. Chem. Phys. 119, 7471 (2003)]. Laino T; Hutter J J Chem Phys; 2008 Aug; 129(7):074102. PubMed ID: 19044755 [TBL] [Abstract][Full Text] [Related]
15. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Price SL; Leslie M; Welch GW; Habgood M; Price LS; Karamertzanis PG; Day GM Phys Chem Chem Phys; 2010 Aug; 12(30):8478-90. PubMed ID: 20607186 [TBL] [Abstract][Full Text] [Related]
16. Topological characterization of electron density, electrostatic potential and intermolecular interactions of 2-nitroimidazole: an experimental and theoretical study. Kalaiarasi C; Pavan MS; Kumaradhas P Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Oct; 72(Pt 5):775-786. PubMed ID: 27698320 [TBL] [Abstract][Full Text] [Related]
17. Thermal vibrations and electrostatic properties of parabanic acid at 123 and 298 K. He XM; Swaminathan S; Craven BM; McMullan RK Acta Crystallogr B; 1988 Jun; 44 ( Pt 3)():271-81. PubMed ID: 3271109 [TBL] [Abstract][Full Text] [Related]
19. Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6(O)3S). Soave R; Barzaghi M; Destro R Chemistry; 2007; 13(24):6942-56. PubMed ID: 17539033 [TBL] [Abstract][Full Text] [Related]
20. Improving the scattering-factor formalism in protein refinement: application of the University at Buffalo Aspherical-Atom Databank to polypeptide structures. Volkov A; Messerschmidt M; Coppens P Acta Crystallogr D Biol Crystallogr; 2007 Feb; 63(Pt 2):160-70. PubMed ID: 17242509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]