These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33125588)

  • 1. Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices.
    Buaki-Sogó M; García-Carmona L; Gil-Agustí M; Zubizarreta L; García-Pellicer M; Quijano-López A
    Top Curr Chem (Cham); 2020 Oct; 378(6):49. PubMed ID: 33125588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices.
    Arakawa T; Xie R; Seshima F; Toma K; Mitsubayashi K
    Biosens Bioelectron; 2018 Apr; 103():171-175. PubMed ID: 29287734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous power generation from glucose with two different miniature flow-through enzymatic biofuel cells.
    du Toit H; Di Lorenzo M
    Biosens Bioelectron; 2015 Jul; 69():199-205. PubMed ID: 25744600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioCapacitor: A novel principle for biosensors.
    Sode K; Yamazaki T; Lee I; Hanashi T; Tsugawa W
    Biosens Bioelectron; 2016 Feb; 76():20-8. PubMed ID: 26278505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Bioelectrochemistry; 2012 Oct; 87():172-7. PubMed ID: 22200380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wired enzymes in mesoporous materials: A benchmark for fabricating biofuel cells.
    Catalano PN; Wolosiuk A; Soler-Illia GJ; Bellino MG
    Bioelectrochemistry; 2015 Dec; 106(Pt A):14-21. PubMed ID: 26187442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes.
    Huang X; Zhang L; Zhang Z; Guo S; Shang H; Li Y; Liu J
    Biosens Bioelectron; 2019 Jan; 124-125():40-52. PubMed ID: 30343155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofuel cells--recent advances and applications.
    Davis F; Higson SP
    Biosens Bioelectron; 2007 Feb; 22(7):1224-35. PubMed ID: 16781864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fueling the Future: The Emergence of Self-Powered Enzymatic Biofuel Cell Biosensors.
    Gupta AK; Krasnoslobodtsev AV
    Biosensors (Basel); 2024 Jun; 14(7):. PubMed ID: 39056592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic biofuel cells: 30 years of critical advancements.
    Rasmussen M; Abdellaoui S; Minteer SD
    Biosens Bioelectron; 2016 Feb; 76():91-102. PubMed ID: 26163747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells.
    Stolarczyk K; Rogalski J; Bilewicz R
    Bioelectrochemistry; 2020 Oct; 135():107574. PubMed ID: 32498025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges for successful implantation of biofuel cells.
    Zebda A; Alcaraz JP; Vadgama P; Shleev S; Minteer SD; Boucher F; Cinquin P; Martin DK
    Bioelectrochemistry; 2018 Dec; 124():57-72. PubMed ID: 30007207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene based enzymatic bioelectrodes and biofuel cells.
    Karimi A; Othman A; Uzunoglu A; Stanciu L; Andreescu S
    Nanoscale; 2015 Apr; 7(16):6909-23. PubMed ID: 25832672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High volumetric power density, non-enzymatic, glucose fuel cells.
    Oncescu V; Erickson D
    Sci Rep; 2013; 3():1226. PubMed ID: 23390576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole RVC biofuel cells for powering medical implants.
    Roxby DN; Ting SRS; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():779-782. PubMed ID: 29059988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns.
    Kwon CH; Lee SH; Choi YB; Lee JA; Kim SH; Kim HH; Spinks GM; Wallace GG; Lima MD; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2014 Jun; 5():3928. PubMed ID: 24887514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofuel cells - Activation of micro- and macro-electronic devices.
    Gamella M; Koushanpour A; Katz E
    Bioelectrochemistry; 2018 Feb; 119():33-42. PubMed ID: 28898755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes.
    Chen Y; Prasad KP; Wang X; Pang H; Yan R; Than A; Chan-Park MB; Chen P
    Phys Chem Chem Phys; 2013 Jun; 15(23):9170-6. PubMed ID: 23652812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.