These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33125641)

  • 1. High-Throughput Protein Engineering by Massively Parallel Combinatorial Mutagenesis.
    Wan YK; Choi GCG; Wong ASL
    Methods Mol Biol; 2021; 2199():3-12. PubMed ID: 33125641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9.
    Choi GCG; Zhou P; Yuen CTL; Chan BKC; Xu F; Bao S; Chu HY; Thean D; Tan K; Wong KH; Zheng Z; Wong ASL
    Nat Methods; 2019 Aug; 16(8):722-730. PubMed ID: 31308554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based design of combinatorial mutagenesis libraries.
    Verma D; Grigoryan G; Bailey-Kellogg C
    Protein Sci; 2015 May; 24(5):895-908. PubMed ID: 25611189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antha-Guided Automation of Darwin Assembly for the Construction of Bespoke Gene Libraries.
    Handal-Marquez P; Koch M; Kestemont D; Arangundy-Franklin S; Pinheiro VB
    Methods Mol Biol; 2022; 2461():43-66. PubMed ID: 35727443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An end-to-end automated platform process for high-throughput engineering of next-generation multi-specific antibody therapeutics.
    Furtmann N; Schneider M; Spindler N; Steinmann B; Li Z; Focken I; Meyer J; Dimova D; Kroll K; Leuschner WD; Debeaumont A; Mathieu M; Lange C; Dittrich W; Kruip J; Schmidt T; Birkenfeld J
    MAbs; 2021; 13(1):1955433. PubMed ID: 34382900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution.
    Zurek PJ; Knyphausen P; Neufeld K; Pushpanath A; Hollfelder F
    Nat Commun; 2020 Nov; 11(1):6023. PubMed ID: 33243970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching sequence space to engineer proteins: exponential ensemble mutagenesis.
    Delagrave S; Youvan DC
    Biotechnology (N Y); 1993 Dec; 11(13):1548-52. PubMed ID: 7764245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pareto Optimization of Combinatorial Mutagenesis Libraries.
    Verma D; Grigoryan G; Bailey-Kellogg C
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1143-1153. PubMed ID: 30040654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Protocol for Functional Assessment of Whole-Protein Saturation Mutagenesis Libraries Utilizing High-Throughput Sequencing.
    Stiffler MA; Subramanian SK; Salinas VH; Ranganathan R
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of stabilized proteins by combinatorial consensus mutagenesis.
    Amin N; Liu AD; Ramer S; Aehle W; Meijer D; Metin M; Wong S; Gualfetti P; Schellenberger V
    Protein Eng Des Sel; 2004 Nov; 17(11):787-93. PubMed ID: 15574484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Combinatorial Assembly and Barcode Sequencing for Gene-Sized DNA Constructs.
    Hernandez Hernandez D; Ding L; Murao A; Dahlin LR; Li G; Arnolds KL; Amezola M; Klein A; Mitra A; Mecacci S; Linger JG; Guarnieri MT; Suzuki Y
    ACS Synth Biol; 2023 Sep; 12(9):2778-2782. PubMed ID: 37582217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of multi-site nicking mutagenesis for generation of large, user-defined combinatorial libraries.
    Kirby MB; Medina-Cucurella AV; Baumer ZT; Whitehead TA
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34341824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PyPEF-An Integrated Framework for Data-Driven Protein Engineering.
    Siedhoff NE; Illig AM; Schwaneberg U; Davari MD
    J Chem Inf Model; 2021 Jul; 61(7):3463-3476. PubMed ID: 34260225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering highly thermostable xylanase variants using an enhanced combinatorial library method.
    Hokanson CA; Cappuccilli G; Odineca T; Bozic M; Behnke CA; Mendez M; Coleman WJ; Crea R
    Protein Eng Des Sel; 2011 Aug; 24(8):597-605. PubMed ID: 21708791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming component limitations in synthetic biology through transposon-mediated protein engineering.
    Atkinson JT; Wu B; Segatori L; Silberg JJ
    Methods Enzymol; 2019; 621():191-212. PubMed ID: 31128779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Flexible Synthesis of Combinatorial Libraries for Directed Evolution.
    Sadler JC; Green L; Swainston N; Kell DB; Currin A
    Methods Enzymol; 2018; 608():59-79. PubMed ID: 30173773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massively parallel high-order combinatorial genetics in human cells.
    Wong AS; Choi GC; Cheng AA; Purcell O; Lu TK
    Nat Biotechnol; 2015 Sep; 33(9):952-61. PubMed ID: 26280411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.
    Lyons E; Sheridan P; Tremmel G; Miyano S; Sugano S
    Sci Rep; 2017 Oct; 7(1):13899. PubMed ID: 29066821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.