These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33125711)
41. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. Souza PFN; Amaral JL; Bezerra LP; Lopes FES; Freire VN; Oliveira JTA; Freitas CDT J Biomol Struct Dyn; 2022 Aug; 40(12):5493-5506. PubMed ID: 33427102 [TBL] [Abstract][Full Text] [Related]
42. Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain. Yang M; Li J; Huang Z; Li H; Wang Y; Wang X; Kang S; Huang X; Wu C; Liu T; Jia Z; Liang J; Yuan X; He S; Chen X; Zhou Z; Chen Q; Liu S; Li J; Zheng H; Liu X; Li K; Yao X; Lang B; Liu L; Liao HX; Chen S Microbiol Spectr; 2021 Oct; 9(2):e0135221. PubMed ID: 34643438 [TBL] [Abstract][Full Text] [Related]
43. The ACE2-binding Interface of SARS-CoV-2 Spike Inherently Deflects Immune Recognition. Hattori T; Koide A; Noval MG; Panchenko T; Romero LA; Teng KW; Tada T; Landau NR; Stapleford KA; Koide S J Mol Biol; 2021 Feb; 433(3):166748. PubMed ID: 33310017 [TBL] [Abstract][Full Text] [Related]
44. Aptamer Blocking Strategy Inhibits SARS-CoV-2 Virus Infection. Sun M; Liu S; Wei X; Wan S; Huang M; Song T; Lu Y; Weng X; Lin Z; Chen H; Song Y; Yang C Angew Chem Int Ed Engl; 2021 Apr; 60(18):10266-10272. PubMed ID: 33561300 [TBL] [Abstract][Full Text] [Related]
45. The spike-ACE2 binding assay: An in vitro platform for evaluating vaccination efficacy and for screening SARS-CoV-2 inhibitors and neutralizing antibodies. Zhang S; Gao C; Das T; Luo S; Tang H; Yao X; Cho CY; Lv J; Maravillas K; Jones V; Chen X; Huang R J Immunol Methods; 2022 Apr; 503():113244. PubMed ID: 35218866 [TBL] [Abstract][Full Text] [Related]
46. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Ridgway H; Chasapis CT; Kelaidonis K; Ligielli I; Moore GJ; Gadanec LK; Zulli A; Apostolopoulos V; Mavromoustakos T; Matsoukas JM Viruses; 2022 May; 14(5):. PubMed ID: 35632769 [TBL] [Abstract][Full Text] [Related]
47. Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Xiang Y; Wang M; Chen H; Chen L Biochem Pharmacol; 2021 Oct; 192():114724. PubMed ID: 34371003 [TBL] [Abstract][Full Text] [Related]
48. Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. Busnadiego I; Fernbach S; Pohl MO; Karakus U; Huber M; Trkola A; Stertz S; Hale BG mBio; 2020 Sep; 11(5):. PubMed ID: 32913009 [TBL] [Abstract][Full Text] [Related]
49. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306 [TBL] [Abstract][Full Text] [Related]
50. Polysulfates Block SARS-CoV-2 Uptake through Electrostatic Interactions*. Nie C; Pouyan P; Lauster D; Trimpert J; Kerkhoff Y; Szekeres GP; Wallert M; Block S; Sahoo AK; Dernedde J; Pagel K; Kaufer BB; Netz RR; Ballauff M; Haag R Angew Chem Int Ed Engl; 2021 Jul; 60(29):15870-15878. PubMed ID: 33860605 [TBL] [Abstract][Full Text] [Related]
51. Inhaled nebulised unfractionated heparin (UFH) for the treatment of hospitalised patients with COVID-19: A randomised controlled pilot study. DeNucci G; Wilkinson T; Sverdloff C; Babadopulos T; Woodcock A; Shute J; Renato Guazelli P; Gerbase LF; Mourão PAS; Singh D; van Haren FMP; Page C Pulm Pharmacol Ther; 2023 Jun; 80():102212. PubMed ID: 36990381 [TBL] [Abstract][Full Text] [Related]
52. Microwave-assisted synthesis of highly sulfated mannuronate glycans as potential inhibitors against SARS-CoV-2. Zhu Y; Wang X; Lu S; Zheng J; Liang Y; Zhang L; Fang P; Xu P; Yu B; Yang Y Org Biomol Chem; 2024 May; 22(19):3986-3994. PubMed ID: 38695061 [TBL] [Abstract][Full Text] [Related]
53. Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans. Bermejo-Jambrina M; Eder J; Kaptein TM; van Hamme JL; Helgers LC; Vlaming KE; Brouwer PJM; van Nuenen AC; Spaargaren M; de Bree GJ; Nijmeijer BM; Kootstra NA; van Gils MJ; Sanders RW; Geijtenbeek TBH EMBO J; 2021 Oct; 40(20):e106765. PubMed ID: 34510494 [TBL] [Abstract][Full Text] [Related]
54. Inhaled nebulised unfractionated heparin for the treatment of hospitalised patients with COVID-19: A multicentre case series of 98 patients. van Haren FMP; van Loon LM; Steins A; Smoot TL; Sas C; Staas S; Vilaseca AB; Barbera RA; Vidmar G; Beccari H; Popilevsky F; Daribayeva E; Venkatesan B; Mozes S; Postel R; Popilevski N; Webb A; Nunes Q; Laffey JG; Artigas A; Smith R; Dixon B; Richardson A; Yoon HJ; Page C Br J Clin Pharmacol; 2022 Jun; 88(6):2802-2813. PubMed ID: 34984714 [TBL] [Abstract][Full Text] [Related]
55. Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Ghoneum M; Abdulmalek S; Fadel HH Nutrients; 2023 Jan; 15(2):. PubMed ID: 36678324 [TBL] [Abstract][Full Text] [Related]
56. Aptamer-, heparin- or cocktail-based inhibition of S1-ACE2 protein complexes. Giroux E; Oake A; Lewis T; Martic S Anal Biochem; 2023 Sep; 676():115223. PubMed ID: 37385465 [TBL] [Abstract][Full Text] [Related]
57. Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. Gupta Y; Maciorowski D; Zak SE; Kulkarni CV; Herbert AS; Durvasula R; Fareed J; Dye JM; Kempaiah P Int J Biol Macromol; 2021 Jul; 183():203-212. PubMed ID: 33915212 [TBL] [Abstract][Full Text] [Related]
58. Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants. Iaconis D; Bordi L; Matusali G; Talarico C; Manelfi C; Cesta MC; Zippoli M; Caccuri F; Bugatti A; Zani A; Filippini F; Scorzolini L; Gobbi M; Beeg M; Piotti A; Montopoli M; Cocetta V; Bressan S; Bucci EM; Caruso A; Nicastri E; Allegretti M; Beccari AR Cell Death Dis; 2022 May; 13(5):498. PubMed ID: 35614039 [TBL] [Abstract][Full Text] [Related]
59. Seaweed-derived fucoidans and rhamnan sulfates serve as potent anti-SARS-CoV-2 agents with potential for prophylaxis. Song Y; Singh A; Feroz MM; Xu S; Zhang F; Jin W; Kumar A; Azadi P; Metzger DW; Linhardt RJ; Dordick JS Carbohydr Polym; 2024 Aug; 337():122156. PubMed ID: 38710572 [TBL] [Abstract][Full Text] [Related]
60. Promising Drug Fondaparinux for the Treatment of COVID-19: an In Silico Analysis of Low Molecular Weight Heparin, Direct Oral Anticoagulant, and Antiplatelet Drug Interactions with Host Protease Furin. Ertan-Bolelli T; Bolelli K; Elçi SD; Belen-Apak FB Cardiovasc Drugs Ther; 2024 Jun; 38(3):425-432. PubMed ID: 36401727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]