BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33125775)

  • 1. Real-time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles.
    Slingers G; Vanden Eede M; Lindekens J; Spruyt M; Goelen E; Raes M; Koppen G
    Rapid Commun Mass Spectrom; 2021 Feb; 35(4):e8994. PubMed ID: 33125775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross Platform Analysis of Volatile Organic Compounds Using Selected Ion Flow Tube and Proton-Transfer-Reaction Mass Spectrometry.
    Lin GP; Vadhwana B; Belluomo I; Boshier PR; Španěl P; Hanna GB
    J Am Soc Mass Spectrom; 2021 May; 32(5):1215-1223. PubMed ID: 33831301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.
    Wondimu T; Wang R; Ross B
    J Breath Res; 2014 Sep; 8(3):036002. PubMed ID: 25079905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air.
    Ross BM; Vermeulen N
    Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath.
    Slingers G; Goossens R; Janssens H; Spruyt M; Goelen E; Vanden EM; Raes M; Koppen G
    J Breath Res; 2020 Jul; 14(3):036006. PubMed ID: 32422613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS).
    Czippelová B; Nováková S; Šarlinová M; Baranovičová E; Urbanová A; Turianiková Z; Krohová JČ; Halašová E; Škovierová H
    J Breath Res; 2024 May; 18(3):. PubMed ID: 38701772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles.
    Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Thermal Desorption with Selected Ion Flow Tube Mass Spectrometry for Analyses of Breath Volatile Organic Compounds.
    Belluomo I; Whitlock SE; Myridakis A; Parker AG; Converso V; Perkins MJ; Langford VS; Španěl P; Hanna GB
    Anal Chem; 2024 Jan; 96(4):1397-1401. PubMed ID: 38243802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry for real-time quantitative breath analysis.
    Smith D; Španěl P; Herbig J; Beauchamp J
    J Breath Res; 2014 Jun; 8(2):027101. PubMed ID: 24682047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study.
    Wang MH; Chong KC; Storer M; Pickering JW; Endre ZH; Lau SY; Kwok C; Lai M; Chung HY; Ying Zee BC
    J Breath Res; 2016 Sep; 10(4):046004. PubMed ID: 27677705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath.
    Belluomo I; Boshier PR; Myridakis A; Vadhwana B; Markar SR; Spanel P; Hanna GB
    Nat Protoc; 2021 Jul; 16(7):3419-3438. PubMed ID: 34089020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry.
    Boshier PR; Marczin N; Hanna GB
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1070-4. PubMed ID: 20335048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS.
    Španěl P; Smith D
    Clin Mass Spectrom; 2020 Apr; 16():18-24. PubMed ID: 34820516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in SIFT-MS: breath analysis and other applications.
    Spaněl P; Smith D
    Mass Spectrom Rev; 2011; 30(2):236-67. PubMed ID: 20648679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A; Smith D; Španěl P
    Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide.
    Gilchrist FJ; Razavi C; Webb AK; Jones AM; Spaněl P; Smith D; Lenney W
    J Breath Res; 2012 Sep; 6(3):036004. PubMed ID: 22759377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking.
    Senthilmohan ST; McEwan MJ; Wilson PF; Milligan DB; Freeman CG
    Redox Rep; 2001; 6(3):185-7. PubMed ID: 11523595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS).
    Huang J; Kumar S; Hanna GB
    J Breath Res; 2014 Sep; 8(3):037104. PubMed ID: 25190002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.