These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 33125775)
1. Real-time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles. Slingers G; Vanden Eede M; Lindekens J; Spruyt M; Goelen E; Raes M; Koppen G Rapid Commun Mass Spectrom; 2021 Feb; 35(4):e8994. PubMed ID: 33125775 [TBL] [Abstract][Full Text] [Related]
2. Cross Platform Analysis of Volatile Organic Compounds Using Selected Ion Flow Tube and Proton-Transfer-Reaction Mass Spectrometry. Lin GP; Vadhwana B; Belluomo I; Boshier PR; Španěl P; Hanna GB J Am Soc Mass Spectrom; 2021 May; 32(5):1215-1223. PubMed ID: 33831301 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry. Wondimu T; Wang R; Ross B J Breath Res; 2014 Sep; 8(3):036002. PubMed ID: 25079905 [TBL] [Abstract][Full Text] [Related]
4. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air. Ross BM; Vermeulen N Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161 [TBL] [Abstract][Full Text] [Related]
5. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath. Slingers G; Goossens R; Janssens H; Spruyt M; Goelen E; Vanden EM; Raes M; Koppen G J Breath Res; 2020 Jul; 14(3):036006. PubMed ID: 32422613 [TBL] [Abstract][Full Text] [Related]
6. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). Czippelová B; Nováková S; Šarlinová M; Baranovičová E; Urbanová A; Turianiková Z; Krohová JČ; Halašová E; Škovierová H J Breath Res; 2024 May; 18(3):. PubMed ID: 38701772 [TBL] [Abstract][Full Text] [Related]
7. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles. Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037 [TBL] [Abstract][Full Text] [Related]
8. Combining Thermal Desorption with Selected Ion Flow Tube Mass Spectrometry for Analyses of Breath Volatile Organic Compounds. Belluomo I; Whitlock SE; Myridakis A; Parker AG; Converso V; Perkins MJ; Langford VS; Španěl P; Hanna GB Anal Chem; 2024 Jan; 96(4):1397-1401. PubMed ID: 38243802 [TBL] [Abstract][Full Text] [Related]
9. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Smith D; Spanel P Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143 [TBL] [Abstract][Full Text] [Related]
10. Mass spectrometry for real-time quantitative breath analysis. Smith D; Španěl P; Herbig J; Beauchamp J J Breath Res; 2014 Jun; 8(2):027101. PubMed ID: 24682047 [TBL] [Abstract][Full Text] [Related]
11. Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study. Wang MH; Chong KC; Storer M; Pickering JW; Endre ZH; Lau SY; Kwok C; Lai M; Chung HY; Ying Zee BC J Breath Res; 2016 Sep; 10(4):046004. PubMed ID: 27677705 [TBL] [Abstract][Full Text] [Related]
12. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Belluomo I; Boshier PR; Myridakis A; Vadhwana B; Markar SR; Spanel P; Hanna GB Nat Protoc; 2021 Jul; 16(7):3419-3438. PubMed ID: 34089020 [TBL] [Abstract][Full Text] [Related]
13. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry. Boshier PR; Marczin N; Hanna GB J Am Soc Mass Spectrom; 2010 Jun; 21(6):1070-4. PubMed ID: 20335048 [TBL] [Abstract][Full Text] [Related]
14. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Dryahina K; Smith D; Spanel P Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601 [TBL] [Abstract][Full Text] [Related]
15. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Španěl P; Smith D Clin Mass Spectrom; 2020 Apr; 16():18-24. PubMed ID: 34820516 [TBL] [Abstract][Full Text] [Related]
16. Progress in SIFT-MS: breath analysis and other applications. Spaněl P; Smith D Mass Spectrom Rev; 2011; 30(2):236-67. PubMed ID: 20648679 [TBL] [Abstract][Full Text] [Related]
17. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath. Spesyvyi A; Smith D; Španěl P Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448 [TBL] [Abstract][Full Text] [Related]
18. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. Gilchrist FJ; Razavi C; Webb AK; Jones AM; Spaněl P; Smith D; Lenney W J Breath Res; 2012 Sep; 6(3):036004. PubMed ID: 22759377 [TBL] [Abstract][Full Text] [Related]
19. Real time analysis of breath volatiles using SIFT-MS in cigarette smoking. Senthilmohan ST; McEwan MJ; Wilson PF; Milligan DB; Freeman CG Redox Rep; 2001; 6(3):185-7. PubMed ID: 11523595 [TBL] [Abstract][Full Text] [Related]
20. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS). Huang J; Kumar S; Hanna GB J Breath Res; 2014 Sep; 8(3):037104. PubMed ID: 25190002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]