BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33125775)

  • 21. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes.
    Storer M; Dummer J; Lunt H; Scotter J; McCartin F; Cook J; Swanney M; Kendall D; Logan F; Epton M
    J Breath Res; 2011 Dec; 5(4):046011. PubMed ID: 22134047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile compounds in blood headspace and nasal breath.
    Ross BM; Babgi R
    J Breath Res; 2017 Sep; 11(4):046001. PubMed ID: 28671107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selected ion flow tube mass spectrometry for on-line trace gas analysis in biology and medicine.
    Spanĕl P; Smith D
    Eur J Mass Spectrom (Chichester); 2007; 13(1):77-82. PubMed ID: 17878543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS).
    Turner C; Spanel P; Smith D
    Physiol Meas; 2006 Jan; 27(1):13-22. PubMed ID: 16365507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites.
    Smith D; Spanel P
    J Breath Res; 2015 Apr; 9(2):022001. PubMed ID: 25830501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days.
    Diskin AM; Spanel P; Smith D
    Physiol Meas; 2003 Feb; 24(1):107-19. PubMed ID: 12636190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.
    Storer M; Salmond J; Dirks KN; Kingham S; Epton M
    J Breath Res; 2014 Sep; 8(3):037106. PubMed ID: 25190304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?
    Smith D; Spaněl P; Fryer AA; Hanna F; Ferns GA
    J Breath Res; 2011 Jun; 5(2):022001. PubMed ID: 21512208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.
    Smith D; Španěl P
    Bioanalysis; 2016 Jun; 8(11):1183-201. PubMed ID: 27212131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of Selected Ion Flow Tube-Mass Spectrometry Technology to Identify Breath Volatile Organic Compounds for the Detection of Head and Neck Squamous Cell Carcinoma: A Pilot Study.
    Chandran D; Ooi EH; Watson DI; Kholmurodova F; Jaenisch S; Yazbeck R
    Medicina (Kaunas); 2019 Jun; 55(6):. PubMed ID: 31242578
    [No Abstract]   [Full Text] [Related]  

  • 32. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis.
    Dryahina K; Smith D; Bortlík M; Machková N; Lukáš M; Španěl P
    J Breath Res; 2017 Nov; 12(1):016002. PubMed ID: 28781264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic Switching and Selection of H
    Španěl P; Spesyvyi A; Smith D
    Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sub-parts per billion detection of trace volatile chemicals in human breath using selected ion flow tube mass spectrometry.
    Ross BM
    BMC Res Notes; 2008 Jul; 1():41. PubMed ID: 18710494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Throughput Breath Volatile Organic Compound Analysis Using Thermal Desorption Proton Transfer Reaction Time-of-Flight Mass Spectrometry.
    Romano A; Doran S; Belluomo I; Hanna GB
    Anal Chem; 2018 Sep; 90(17):10204-10210. PubMed ID: 30106567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extending PTR based breath analysis to real-time monitoring of reactive volatile organic compounds.
    Pugliese G; Trefz P; Brock B; Schubert JK; Miekisch W
    Analyst; 2019 Dec; 144(24):7359-7367. PubMed ID: 31663533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry.
    Dryahina K; Španěl P; Pospíšilová V; Sovová K; Hrdlička L; Machková N; Lukáš M; Smith D
    Rapid Commun Mass Spectrom; 2013 Sep; 27(17):1983-92. PubMed ID: 23939966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection.
    Gilchrist FJ; Bright-Thomas RJ; Jones AM; Smith D; Spaněl P; Webb AK; Lenney W
    J Breath Res; 2013 Jun; 7(2):026010. PubMed ID: 23680696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.