BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33125848)

  • 1. Comparative Studies of Potential Binding Pocket Residues Reveal the Molecular Basis of ShHTL Receptors in the Perception of GR24 in
    Pang Z; Zhang X; Ma F; Liu J; Zhang H; Wang J; Wen X; Xi Z
    J Agric Food Chem; 2020 Nov; 68(45):12729-12737. PubMed ID: 33125848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga.
    Wang Y; Yao R; Du X; Guo L; Chen L; Xie D; Smith SM
    Plant Physiol; 2021 Apr; 185(4):1411-1428. PubMed ID: 33793945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of substrate recognition in modulating strigolactone receptor selectivity in witchweed.
    Chen J; White A; Nelson DC; Shukla D
    J Biol Chem; 2021 Oct; 297(4):101092. PubMed ID: 34437903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation Mechanism of Strigolactone Receptors and Its Impact on Ligand Selectivity between Host and Parasitic Plants.
    Chen J; Nelson DC; Shukla D
    J Chem Inf Model; 2022 Apr; 62(7):1712-1722. PubMed ID: 35192364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor.
    Shahul Hameed U; Haider I; Jamil M; Kountche BA; Guo X; Zarban RA; Kim D; Al-Babili S; Arold ST
    EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30021834
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystal structure and biochemical characterization of Striga hermonthica HYPO-SENSITIVE TO LIGHT 8 (ShHTL8) in strigolactone signaling pathway.
    Zhang Y; Wang D; Shen Y; Xi Z
    Biochem Biophys Res Commun; 2020 Mar; 523(4):1040-1045. PubMed ID: 31973817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga.
    Xu Y; Miyakawa T; Nosaki S; Nakamura A; Lyu Y; Nakamura H; Ohto U; Ishida H; Shimizu T; Asami T; Tanokura M
    Nat Commun; 2018 Sep; 9(1):3947. PubMed ID: 30258184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga.
    Toh S; Holbrook-Smith D; Stogios PJ; Onopriyenko O; Lumba S; Tsuchiya Y; Savchenko A; McCourt P
    Science; 2015 Oct; 350(6257):203-7. PubMed ID: 26450211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds.
    Wang D; Pang Z; Yu H; Thiombiano B; Walmsley A; Yu S; Zhang Y; Wei T; Liang L; Wang J; Wen X; Bouwmeester HJ; Yao R; Xi Z
    Nat Commun; 2022 Jul; 13(1):3987. PubMed ID: 35810153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific reduction of the butenolide in strigolactones in plants.
    Yamauchi M; Ueno K; Furumoto T; Wakabayashi T; Mizutani M; Takikawa H; Sugimoto Y
    Bioorg Med Chem; 2018 Aug; 26(14):4225-4233. PubMed ID: 30007566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strigolactone receptor antagonist provides insights into the structural inhibition, conditioning, and germination of the crop parasite Striga.
    Arellano-Saab A; McErlean CSP; Lumba S; Savchenko A; Stogios PJ; McCourt P
    J Biol Chem; 2022 Apr; 298(4):101734. PubMed ID: 35181340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant.
    Liu Q; Zhang Y; Matusova R; Charnikhova T; Amini M; Jamil M; Fernandez-Aparicio M; Huang K; Timko MP; Westwood JH; Ruyter-Spira C; van der Krol S; Bouwmeester HJ
    New Phytol; 2014 Apr; 202(2):531-541. PubMed ID: 24483232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strigolactone Analogues Derived from Dihydroflavonoids as Potent Seed Germinators for the Broomrapes.
    Kang Y; Pang Z; Xu N; Chen F; Jin Z; Xu X
    J Agric Food Chem; 2020 Oct; 68(40):11077-11087. PubMed ID: 32924502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica.
    Xu Y; Miyakawa T; Nakamura H; Nakamura A; Imamura Y; Asami T; Tanokura M
    Sci Rep; 2016 Aug; 6():31386. PubMed ID: 27507097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strigolactones--intriguing biologically active compounds: perspectives for deciphering their biological role and for proposing practical application.
    Vurro M; Yoneyama K
    Pest Manag Sci; 2012 May; 68(5):664-8. PubMed ID: 22323399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single step synthesis of strigolactone analogues from cyclic keto enols, germination stimulants for seeds of parasitic weeds.
    Mwakaboko AS; Zwanenburg B
    Bioorg Med Chem; 2011 Aug; 19(16):5006-11. PubMed ID: 21757362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones.
    Chesterfield RJ; Whitfield JH; Pouvreau B; Cao D; Alexandrov K; Beveridge CA; Vickers CE
    ACS Synth Biol; 2020 Aug; 9(8):2107-2118. PubMed ID: 32786922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellins Promote Seed Conditioning by Up-Regulating Strigolactone Receptors in the Parasitic Plant Striga hermonthica.
    Yap JX; Tsuchiya Y
    Plant Cell Physiol; 2023 Sep; 64(9):1021-1033. PubMed ID: 37300550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds.
    Fukui K; Ito S; Asami T
    Mol Plant; 2013 Jan; 6(1):88-99. PubMed ID: 23204501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals.
    Ito S
    Biosci Biotechnol Biochem; 2023 Feb; 87(3):247-255. PubMed ID: 36610999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.