These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 33125898)
1. Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. Zuccaro MV; Xu J; Mitchell C; Marin D; Zimmerman R; Rana B; Weinstein E; King RT; Palmerola KL; Smith ME; Tsang SH; Goland R; Jasin M; Lobo R; Treff N; Egli D Cell; 2020 Dec; 183(6):1650-1664.e15. PubMed ID: 33125898 [TBL] [Abstract][Full Text] [Related]
2. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
3. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Wilde JJ; Aida T; Del Rosario RCH; Kaiser T; Qi P; Wienisch M; Zhang Q; Colvin S; Feng G Cell; 2021 Jun; 184(12):3267-3280.e18. PubMed ID: 34043941 [TBL] [Abstract][Full Text] [Related]
4. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. Bekaert B; Boel A; Rybouchkin A; Cosemans G; Declercq S; Chuva de Sousa Lopes SM; Parrington J; Stoop D; Coucke P; Menten B; Heindryckx B J Assist Reprod Genet; 2024 Jun; 41(6):1605-1617. PubMed ID: 38557805 [TBL] [Abstract][Full Text] [Related]
5. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829 [TBL] [Abstract][Full Text] [Related]
6. Genome Editing in Mice Using CRISPR/Cas9 Technology. Hall B; Cho A; Limaye A; Cho K; Khillan J; Kulkarni AB Curr Protoc Cell Biol; 2018 Dec; 81(1):e57. PubMed ID: 30178917 [TBL] [Abstract][Full Text] [Related]
7. Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Schep R; Brinkman EK; Leemans C; Vergara X; van der Weide RH; Morris B; van Schaik T; Manzo SG; Peric-Hupkes D; van den Berg J; Beijersbergen RL; Medema RH; van Steensel B Mol Cell; 2021 May; 81(10):2216-2230.e10. PubMed ID: 33848455 [TBL] [Abstract][Full Text] [Related]
8. Correction of a pathogenic gene mutation in human embryos. Ma H; Marti-Gutierrez N; Park SW; Wu J; Lee Y; Suzuki K; Koski A; Ji D; Hayama T; Ahmed R; Darby H; Van Dyken C; Li Y; Kang E; Park AR; Kim D; Kim ST; Gong J; Gu Y; Xu X; Battaglia D; Krieg SA; Lee DM; Wu DH; Wolf DP; Heitner SB; Belmonte JCI; Amato P; Kim JS; Kaul S; Mitalipov S Nature; 2017 Aug; 548(7668):413-419. PubMed ID: 28783728 [TBL] [Abstract][Full Text] [Related]
9. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Román-Rodríguez FJ; Ugalde L; Álvarez L; Díez B; Ramírez MJ; Risueño C; Cortón M; Bogliolo M; Bernal S; March F; Ayuso C; Hanenberg H; Sevilla J; Rodríguez-Perales S; Torres-Ruiz R; Surrallés J; Bueren JA; Río P Cell Stem Cell; 2019 Nov; 25(5):607-621.e7. PubMed ID: 31543367 [TBL] [Abstract][Full Text] [Related]
10. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions. Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314 [TBL] [Abstract][Full Text] [Related]
11. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Iyer S; Suresh S; Guo D; Daman K; Chen JCJ; Liu P; Zieger M; Luk K; Roscoe BP; Mueller C; King OD; Emerson CP; Wolfe SA Nature; 2019 Apr; 568(7753):561-565. PubMed ID: 30944467 [TBL] [Abstract][Full Text] [Related]
12. Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Stark JM; Jasin M Mol Cell Biol; 2003 Jan; 23(2):733-43. PubMed ID: 12509470 [TBL] [Abstract][Full Text] [Related]
13. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
14. Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline. Grunwald HA; Gantz VM; Poplawski G; Xu XS; Bier E; Cooper KL Nature; 2019 Feb; 566(7742):105-109. PubMed ID: 30675057 [TBL] [Abstract][Full Text] [Related]
15. Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage. Bollen Y; Hageman JH; van Leenen P; Derks LLM; Ponsioen B; Buissant des Amorie JR; Verlaan-Klink I; van den Bos M; Terstappen LWMM; van Boxtel R; Snippert HJG PLoS Biol; 2022 Jan; 20(1):e3001527. PubMed ID: 35089911 [TBL] [Abstract][Full Text] [Related]
16. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Chen W; McKenna A; Schreiber J; Haeussler M; Yin Y; Agarwal V; Noble WS; Shendure J Nucleic Acids Res; 2019 Sep; 47(15):7989-8003. PubMed ID: 31165867 [TBL] [Abstract][Full Text] [Related]
17. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232 [TBL] [Abstract][Full Text] [Related]
18. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Alanis-Lobato G; Zohren J; McCarthy A; Fogarty NME; Kubikova N; Hardman E; Greco M; Wells D; Turner JMA; Niakan KK Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050011 [TBL] [Abstract][Full Text] [Related]
19. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740 [TBL] [Abstract][Full Text] [Related]
20. Prevalence of Mutation-Prone Microhomology-Mediated End Joining in a Chordate Lacking the c-NHEJ DNA Repair Pathway. Deng W; Henriet S; Chourrout D Curr Biol; 2018 Oct; 28(20):3337-3341.e4. PubMed ID: 30293719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]