BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33125957)

  • 1. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation, validation, and prediction of loading-induced mineral apposition rates at endocortical and periosteal bone surfaces based on fluid velocity and pore pressure.
    Singh S; Singh SJ; Prasad J
    Bone Rep; 2023 Dec; 19():101729. PubMed ID: 38089647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cortical bone mineral apposition rate in response to loading using an adaptive neuro-fuzzy inference system.
    Kumar R; Pathak VK
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(3):261-280. PubMed ID: 35373664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading.
    Piet J; Hu D; Baron R; Shefelbine SJ
    Bone; 2019 Mar; 120():487-494. PubMed ID: 30586636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability of cortical bone of canine tibiae.
    Li GP; Bronk JT; An KN; Kelly PJ
    Microvasc Res; 1987 Nov; 34(3):302-10. PubMed ID: 2448591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue.
    Kumar R
    Comput Methods Biomech Biomed Engin; 2024 Feb; ():1-15. PubMed ID: 38372236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cortical bone stiffness and mineralization from endosteal to periosteal surfaces of bovine mid-diaphyseal femur.
    Hage IS; Hage RS; Yassine RA; Seif CY; Hamade RF
    J Bone Miner Metab; 2021 Sep; 39(5):725-736. PubMed ID: 33822263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in mouse bone permeability.
    Rodriguez-Florez N; Oyen ML; Shefelbine SJ
    J Biomech; 2014 Mar; 47(5):1110-6. PubMed ID: 24433671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.
    Carrieroa A; Pereirab AF; Wilson AJ; Castagno S; Javaheri B; Pitsillides AA; Marenzana M; Shefelbine SJ
    Bone Rep; 2018 Jun; 8():72-80. PubMed ID: 29904646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational model for cortical endosteal surface remodeling induced by mechanical disuse.
    Gong H; Zhang M
    Mol Cell Biomech; 2010 Mar; 7(1):1-11. PubMed ID: 20806719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femur lengthening with a vascularized tibia bone flap.
    Fealy MJ; Most D; Struck S; Simms GE; Hui K
    Ann Plast Surg; 1996 Aug; 37(2):140-6. PubMed ID: 8863972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone.
    Shrivas NV; Badhyal S; Tiwari AK; Mishra A; Tripathi D; Patil S
    Comput Methods Programs Biomed; 2023 Jul; 237():107592. PubMed ID: 37209515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic permeability of the lacunar-canalicular system in human cortical bone.
    Benalla M; Palacio-Mancheno PE; Fritton SP; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2014 Aug; 13(4):801-12. PubMed ID: 24146291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating age and micro-architecture with apparent-level elastic constants: a micro-finite element study of female cortical bone from the anterior femoral midshaft.
    Donaldson FE; Pankaj P; Cooper DM; Thomas CD; Clement JG; Simpson AH
    Proc Inst Mech Eng H; 2011 Jun; 225(6):585-96. PubMed ID: 22034742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.