These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33125981)

  • 1. Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions.
    Engler S; de Kleine E; Avan P; van Dijk P
    Hear Res; 2020 Dec; 398():108100. PubMed ID: 33125981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba).
    Engler S; Köppl C; Manley GA; de Kleine E; van Dijk P
    Hear Res; 2020 Jan; 385():107835. PubMed ID: 31710933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves.
    Engler S; Gaudrain E; de Kleine E; van Dijk P
    J Acoust Soc Am; 2022 Feb; 151(2):1055. PubMed ID: 35232113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience.
    Liu Y; Xu R; Gong Q
    J Speech Lang Hear Res; 2020 Dec; 63(12):4277-4288. PubMed ID: 33151817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions.
    Howard MA; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):285-96. PubMed ID: 11831802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human.
    Wang Y; Gong Q; Zhang T
    Biomed Eng Online; 2016 May; 15(1):51. PubMed ID: 27160830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of loop diuretics on the suppression tuning of distortion-product otoacoustic emissions in rabbits.
    Martin GK; Jassir D; Stagner BB; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Aug; 104(2 Pt 1):972-83. PubMed ID: 9714917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas.
    Charaziak KK; Siegel JH
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):883-96. PubMed ID: 25230801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation.
    Charaziak KK; Siegel JH
    J Assoc Res Otolaryngol; 2015 Jun; 16(3):317-29. PubMed ID: 25813430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No otoacoustic evidence for a peripheral basis of absolute pitch.
    McKetton L; Purcell D; Stone V; Grahn J; Bergevin C
    Hear Res; 2018 Dec; 370():201-208. PubMed ID: 30190151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
    Charaziak KK; Souza PE; Siegel JH
    Int J Audiol; 2015 Feb; 54(2):96-105. PubMed ID: 25290042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.
    Micheyl C; Collet L
    Scand Audiol; 1994; 23(3):171-8. PubMed ID: 7997834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans.
    Rasetshwane DM; Bosen EC; Kopun JG; Neely ST
    J Acoust Soc Am; 2019 Dec; 146(6):4481. PubMed ID: 31893726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The shape of 2f1-f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii.
    Frank G; Kössl M
    Hear Res; 1995 Mar; 83(1-2):151-60. PubMed ID: 7607981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbamazepine induces upward frequency shifts of spontaneous otoacoustic emissions.
    de Kleine E; Maat B; Metzemaekers JD; van Dijk P
    Hear Res; 2022 Jul; 420():108492. PubMed ID: 35395509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An objective assessment method for frequency selectivity of the human auditory system.
    Gong Q; Wang Y; Xian M
    Biomed Eng Online; 2014 Dec; 13():171. PubMed ID: 25522838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.