BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33126130)

  • 1. Improving performance in motor imagery BCI-based control applications via virtually embodied feedback.
    Choi JW; Huh S; Jo S
    Comput Biol Med; 2020 Dec; 127():104079. PubMed ID: 33126130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor Imagery Performance through Embodied Digital Twins in a Virtual Reality-Enabled Brain-Computer Interface Environment.
    Lakshminarayanan K; Shah R; Ramu V; Madathil D; Yao Y; Wang I; Brahmi B; Rahman MH
    J Vis Exp; 2024 May; (207):. PubMed ID: 38801273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical activation and BCI performance during brief tactile imagery: A comparative study with motor imagery.
    Sengupta P; Lakshminarayanan K
    Behav Brain Res; 2024 Feb; 459():114760. PubMed ID: 37979923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Self-Paced Embodiable Neurofeedback for Post-stroke Motor Rehabilitation.
    Spychala N; Debener S; Bongartz E; Müller HHO; Thorne JD; Philipsen A; Braun N
    Front Hum Neurosci; 2019; 13():461. PubMed ID: 32038198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agency and responsibility over virtual movements controlled through different paradigms of brain-computer interface.
    Nierula B; Spanlang B; Martini M; Borrell M; Nikulin VV; Sanchez-Vives MV
    J Physiol; 2021 May; 599(9):2419-2434. PubMed ID: 31647122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of motor imagery based brain computer interface performance using a reaction time test.
    Darvishi S; Abbott D; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2880-3. PubMed ID: 26736893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving motor imagery classification during induced motor perturbations.
    Vidaurre C; Jorajuría T; Ramos-Murguialday A; Müller KR; Gómez M; Nikulin VV
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34233305
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance.
    Barsotti M; Leonardis D; Vanello N; Bergamasco M; Frisoli A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):105-114. PubMed ID: 28809705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the Correlation between the Motor Ability of the Individual Upper Limbs and Motor Imagery Induced Neural Activities.
    Gu B; Wang K; Chen L; He J; Zhang D; Xu M; Wang Z; Ming D
    Neuroscience; 2023 Oct; 530():56-65. PubMed ID: 37652289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online performance evaluation of motor imagery BCI with augmented-reality virtual hand feedback.
    Chin ZY; Ang KK; Wang C; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3341-4. PubMed ID: 21097231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs.
    Ren S; Wang W; Hou ZG; Liang X; Wang J; Shi W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1846-1855. PubMed ID: 32746291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG datasets for motor imagery brain-computer interface.
    Cho H; Ahn M; Ahn S; Kwon M; Jun SC
    Gigascience; 2017 Jul; 6(7):1-8. PubMed ID: 28472337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.