These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33126235)

  • 21. Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals.
    Lee BG; Lee BL; Chung WY
    Sensors (Basel); 2014 Sep; 14(10):17915-36. PubMed ID: 25264954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A LightGBM-Based EEG Analysis Method for Driver Mental States Classification.
    Zeng H; Yang C; Zhang H; Wu Z; Zhang J; Dai G; Babiloni F; Kong W
    Comput Intell Neurosci; 2019; 2019():3761203. PubMed ID: 31611912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism.
    Gao D; Wang K; Wang M; Zhou J; Zhang Y
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4444-4455. PubMed ID: 37310832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.
    Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on driver's anger recognition method based on multimodal data fusion.
    Sun W; Liu Y; Li S; Tian J; Wang F; Liu D
    Traffic Inj Prev; 2024; 25(3):354-363. PubMed ID: 38346170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System.
    Chai R; Naik GR; Nguyen TN; Ling SH; Tran Y; Craig A; Nguyen HT
    IEEE J Biomed Health Inform; 2017 May; 21(3):715-724. PubMed ID: 26915141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
    Jaiswal AK; Banka H
    Biomed Mater Eng; 2017; 28(2):141-157. PubMed ID: 28372267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time EEG-based detection of fatigue driving danger for accident prediction.
    Wang H; Zhang C; Shi T; Wang F; Ma S
    Int J Neural Syst; 2015 Mar; 25(2):1550002. PubMed ID: 25541095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification.
    Siuly S; Li Y
    Comput Methods Programs Biomed; 2015 Apr; 119(1):29-42. PubMed ID: 25704869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Source-Space Brain Functional Connectivity Features in Electroencephalogram-Based Driver Fatigue Classification.
    Nguyen KH; Ebbatson M; Tran Y; Craig A; Nguyen H; Chai R
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An approach to EEG-based emotion recognition using combined feature extraction method.
    Zhang Y; Ji X; Zhang S
    Neurosci Lett; 2016 Oct; 633():152-157. PubMed ID: 27666975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance Improvement of Driving Fatigue Identification Based on Power Spectra and Connectivity Using Feature Level and Decision Level Fusions.
    Harvy J; Sigalas E; Thakor N; Bezerianos A; Li J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():102-105. PubMed ID: 30440351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model.
    Hu J; Min J
    Cogn Neurodyn; 2018 Aug; 12(4):431-440. PubMed ID: 30137879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an algorithm for an EEG-based driver fatigue countermeasure.
    Lal SK; Craig A; Boord P; Kirkup L; Nguyen H
    J Safety Res; 2003; 34(3):321-8. PubMed ID: 12963079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research on driving fatigue detection based on basic scale entropy and MVAR-PSI.
    Wang F; Kang X; Fu R; Lu B
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35788110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel local senary pattern based epilepsy diagnosis system using EEG signals.
    Tuncer T; Dogan S; Akbal E
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):939-948. PubMed ID: 31482442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partial directed coherence based graph convolutional neural networks for driving fatigue detection.
    Zhang W; Wang F; Wu S; Xu Z; Ping J; Jiang Y
    Rev Sci Instrum; 2020 Jul; 91(7):074713. PubMed ID: 32752838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological signal analysis for fatigue level of experienced and inexperienced drivers.
    Li R; Su W; Lu Z
    Traffic Inj Prev; 2017 Feb; 18(2):139-144. PubMed ID: 27589585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.