BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33126495)

  • 1. Glycine Receptor Inhibition Differentially Affect Selected Neuronal Populations of the Developing Embryonic Cortex, as Evidenced by the Analysis of Spontaneous Calcium Oscillations.
    Ávila D; Aedo E; Sánchez-Hechavarria M; Ávila C; Ávila A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33126495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine receptor α2 subunit activation promotes cortical interneuron migration.
    Avila A; Vidal PM; Dear TN; Harvey RJ; Rigo JM; Nguyen L
    Cell Rep; 2013 Aug; 4(4):738-50. PubMed ID: 23954789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective separation and transcriptome analyses of cortical projection neurons and interneurons based on lineage tracing by Tbr2 (Eomes)-GFP/Dcx-mRFP reporters.
    Liu J; Wu X; Zhang H; Qiu R; Yoshikawa K; Lu Q
    Dev Neurobiol; 2016 Jun; 76(6):587-99. PubMed ID: 26248544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling.
    Pla R; Borrell V; Flames N; Marín O
    J Neurosci; 2006 Jun; 26(26):6924-34. PubMed ID: 16807322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons.
    Goldberg JH; Yuste R
    Trends Neurosci; 2005 Mar; 28(3):158-67. PubMed ID: 15749170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons.
    Abe P; Mueller W; Schütz D; MacKay F; Thelen M; Zhang P; Stumm R
    Development; 2014 May; 141(9):1857-63. PubMed ID: 24718993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient Cell-intrinsic Activity Regulates the Migration and Laminar Positioning of Cortical Projection Neurons.
    Hurni N; Kolodziejczak M; Tomasello U; Badia J; Jacobshagen M; Prados J; Dayer A
    Cereb Cortex; 2017 May; 27(5):3052-3063. PubMed ID: 28334356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMPR1a signaling determines numbers of oligodendrocytes and calbindin-expressing interneurons in the cortex.
    Samanta J; Burke GM; McGuire T; Pisarek AJ; Mukhopadhyay A; Mishina Y; Kessler JA
    J Neurosci; 2007 Jul; 27(28):7397-407. PubMed ID: 17626200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonsynaptic glycine receptor activation during early neocortical development.
    Flint AC; Liu X; Kriegstein AR
    Neuron; 1998 Jan; 20(1):43-53. PubMed ID: 9459441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex.
    Tanaka DH; Maekawa K; Yanagawa Y; Obata K; Murakami F
    Development; 2006 Jun; 133(11):2167-76. PubMed ID: 16672340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism.
    Priya R; Paredes MF; Karayannis T; Yusuf N; Liu X; Jaglin X; Graef I; Alvarez-Buylla A; Fishell G
    Cell Rep; 2018 Feb; 22(7):1695-1709. PubMed ID: 29444424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early emergence of cortical interneuron diversity in the mouse embryo.
    Mi D; Li Z; Lim L; Li M; Moissidis M; Yang Y; Gao T; Hu TX; Pratt T; Price DJ; Sestan N; Marín O
    Science; 2018 Apr; 360(6384):81-85. PubMed ID: 29472441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex.
    Yokota Y; Gashghaei HT; Han C; Watson H; Campbell KJ; Anton ES
    PLoS One; 2007 Aug; 2(8):e794. PubMed ID: 17726524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex.
    Calvigioni D; Máté Z; Fuzik J; Girach F; Zhang MD; Varro A; Beiersdorf J; Schwindling C; Yanagawa Y; Dockray GJ; McBain CJ; Hökfelt T; Szabó G; Keimpema E; Harkany T
    Cereb Cortex; 2017 Apr; 27(4):2453-2468. PubMed ID: 27102657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis.
    Silva CG; Peyre E; Adhikari MH; Tielens S; Tanco S; Van Damme P; Magno L; Krusy N; Agirman G; Magiera MM; Kessaris N; Malgrange B; Andrieux A; Janke C; Nguyen L
    Cell; 2018 Feb; 172(5):1063-1078.e19. PubMed ID: 29474907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin and specification of cortical interneurons.
    Wonders CP; Anderson SA
    Nat Rev Neurosci; 2006 Sep; 7(9):687-96. PubMed ID: 16883309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mice with targeted deletion of glycine receptor alpha 2.
    Young-Pearse TL; Ivic L; Kriegstein AR; Cepko CL
    Mol Cell Biol; 2006 Aug; 26(15):5728-34. PubMed ID: 16847326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.
    Hevner RF; Neogi T; Englund C; Daza RA; Fink A
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):39-53. PubMed ID: 12644247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal and spatial origins of cortical interneurons predict their physiological subtype.
    Butt SJ; Fuccillo M; Nery S; Noctor S; Kriegstein A; Corbin JG; Fishell G
    Neuron; 2005 Nov; 48(4):591-604. PubMed ID: 16301176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.