These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33127110)

  • 21. Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide.
    Visconti V; Rigalma K; Coton E; Dantigny P
    Food Microbiol; 2021 Dec; 100():103850. PubMed ID: 34416954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorine inactivation of fungal spores on cereal grains.
    Andrews S; Pardoel D; Harun A; Treloar T
    Int J Food Microbiol; 1997 Apr; 35(2):153-62. PubMed ID: 9105923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Sporicidal Disinfectants for the Disinfection of Personal Protective Equipment During Biological Hazards.
    Papp S; Kimmerl K; Gatz J; Laue M; Grunow R; Kaspari O
    Health Secur; 2020; 18(1):36-48. PubMed ID: 32078425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of UV-LED based advanced disinfection processes in the inactivation of waterborne fungal spores: Kinetics, photoreactivation, mechanism and energy requirements.
    Wan Q; Cao R; Wen G; Xu X; Xia Y; Wu G; Li Y; Wang J; Xu H; Lin Y; Huang T
    Sci Total Environ; 2022 Jan; 803():150107. PubMed ID: 34525763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of UV-LEDs and LPUV on inactivation and subsequent reactivation of waterborne fungal spores.
    Wan Q; Wen G; Cao R; Xu X; Zhao H; Li K; Wang J; Huang T
    Water Res; 2020 Apr; 173():115553. PubMed ID: 32028247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.
    Cho M; Kim JH; Yoon J
    Water Res; 2006 Aug; 40(15):2911-20. PubMed ID: 16884760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining.
    Nocker A; Cheswick R; Dutheil de la Rochere PM; Denis M; Léziart T; Jarvis P
    Environ Technol; 2017 Apr; 38(7):891-900. PubMed ID: 27852151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra.
    Malyshev D; Dahlberg T; Wiklund K; Andersson PO; Henriksson S; Andersson M
    Anal Chem; 2021 Feb; 93(6):3146-3153. PubMed ID: 33523636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants.
    Szabo JG; Meiners G; Heckman L; Rice EW; Hall J
    J Environ Manage; 2017 Feb; 187():1-7. PubMed ID: 27865123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective inactivation of fungal spores by the combined UV/PAA: Synergistic effect and mechanisms.
    Xu X; Zuo J; Wan Q; Cao R; Xu H; Li K; Huang T; Wen G; Ma J
    J Hazard Mater; 2022 May; 430():128515. PubMed ID: 35739689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine.
    Cho M; Chung H; Yoon J
    Environ Sci Technol; 2003 May; 37(10):2134-8. PubMed ID: 12785518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of viable fungal spores contaminant on documents and rapid control of the effectiveness of an ethylene oxide disinfection using ATP assay.
    Rakotonirainy MS; Héraud C; Lavédrine B
    Luminescence; 2003; 18(2):113-21. PubMed ID: 12687632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Fe(VI) (FeO4(2-)) and ozone in inactivating Bacillus subtilis spores.
    Makky EA; Park GS; Choi IW; Cho SI; Kim H
    Chemosphere; 2011 May; 83(9):1228-33. PubMed ID: 21489600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spores of two fish microsporidia (Pseudoloma neurophilia and Glugea anomala) are highly resistant to chlorine.
    Ferguson JA; Watral V; Schwindt AR; Kent ML
    Dis Aquat Organ; 2007 Jul; 76(3):205-14. PubMed ID: 17803106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced disinfection of bacteria and fungal spores by transition metal ions-activated peroxymonosulfate.
    Wu G; Wang J; Wan Q; Cao S; Huang T; Lu J; Ma J; Wen G
    Water Res; 2023 Sep; 243():120378. PubMed ID: 37482005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Escherichia coli inactivation by several disinfectants.
    Cho M; Kim J; Kim JY; Yoon J; Kim JH
    Water Res; 2010 Jun; 44(11):3410-8. PubMed ID: 20427068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry.
    Wang Y; Claeys L; van der Ha D; Verstraete W; Boon N
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):331-41. PubMed ID: 20352423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: Culturability, membrane permeability, metabolism, and genetic damage.
    Xu L; Zhang C; Xu P; Wang XC
    J Environ Sci (China); 2018 Mar; 65():356-366. PubMed ID: 29548407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactivation of fungal spores in water by CuO-activated peracetic acid: Kinetics, mechanism and regrowth.
    Li Y; Li K; Wan Q; Xu X; Cao R; Wang J; Huang T; Wen G
    J Hazard Mater; 2022 Oct; 439():129611. PubMed ID: 35863220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free chlorine and monochloramine inactivation kinetics of Aspergillus and Penicillium in drinking water.
    Ma X; Bibby K
    Water Res; 2017 Sep; 120():265-271. PubMed ID: 28501787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.