BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33127412)

  • 21. Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification.
    Ruth K; Grubelnik A; Hartmann R; Egli T; Zinn M; Ren Q
    Biomacromolecules; 2007 Jan; 8(1):279-86. PubMed ID: 17206818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trimethylsilyl transfer during electron ionization mass spectral fragmentation of some omega-hydroxycarboxylic and omega-dicarboxylic acid trimethylsilyl derivatives and the effect of chain length.
    Rontani JF; Aubert C
    Rapid Commun Mass Spectrom; 2004; 18(17):1889-95. PubMed ID: 15329853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids.
    Seo JH; Lee SM; Lee J; Park JB
    J Biotechnol; 2015 Dec; 216():158-66. PubMed ID: 26546054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acidovorax kalamii sp. nov., isolated from a water sample of the river Ganges.
    Pal D; Kaur N; Sudan SK; Bisht B; Krishnamurthi S; Mayilraj S
    Int J Syst Evol Microbiol; 2018 May; 68(5):1719-1724. PubMed ID: 29616893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acidovorax lacteus sp. nov., isolated from a culture of a bloom-forming cyanobacterium (Microcystis sp.).
    Chun SJ; Cui Y; Ko SR; Lee HG; Srivastava A; Oh HM; Ahn CY
    Antonie Van Leeuwenhoek; 2017 Sep; 110(9):1199-1205. PubMed ID: 28553696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov.
    Singleton DR; Lee J; Dickey AN; Stroud A; Scholl EH; Wright FA; Aitken MD
    Syst Appl Microbiol; 2018 Sep; 41(5):460-472. PubMed ID: 29937052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals.
    Kramer L; Hankore ED; Liu Y; Liu K; Jimenez E; Guo J; Niu W
    Chembiochem; 2018 Jul; 19(13):1452-1460. PubMed ID: 29659112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acidovorax soli sp. nov., isolated from landfill soil.
    Choi JH; Kim MS; Roh SW; Bae JW
    Int J Syst Evol Microbiol; 2010 Dec; 60(Pt 12):2715-2718. PubMed ID: 20061503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acidovorax PSJ13, a novel, efficient polyacrylamide-degrading bacterium by cleaving the main carbon chain skeleton without the production of acrylamide.
    Wang Z; Li K; Gui X; Li Z
    Biodegradation; 2023 Dec; 34(6):581-595. PubMed ID: 37395852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of cycloalkane carboxylic acids in oil sand tailings.
    Herman DC; Fedorak PM; Costerton JW
    Can J Microbiol; 1993 Jun; 39(6):576-80. PubMed ID: 8358669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42.
    Lee KS; Parales JV; Friemann R; Parales RE
    J Ind Microbiol Biotechnol; 2005 Oct; 32(10):465-73. PubMed ID: 16175409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis.
    Schäfer L; Bühler K; Karande R; Bühler B
    Biotechnol J; 2020 Nov; 15(11):e2000091. PubMed ID: 32735401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carboxylic acid reductase: Structure and mechanism.
    Gahloth D; Aleku GA; Leys D
    J Biotechnol; 2020 Jan; 307():107-113. PubMed ID: 31689469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocatalytic reduction of carboxylic acids.
    Napora-Wijata K; Strohmeier GA; Winkler M
    Biotechnol J; 2014 Jun; 9(6):822-43. PubMed ID: 24737783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae.
    Vaneechoutte M; Janssens M; Avesani V; Delmée M; Deschaght P
    Int J Syst Evol Microbiol; 2013 Jun; 63(Pt 6):2203-2206. PubMed ID: 23148096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids.
    Pickl M; Marín-Valls R; Joglar J; Bujons J; Clapés P
    Adv Synth Catal; 2021 Jun; 363(11):2866-2876. PubMed ID: 34276272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement in the Thermostability of a β-Amino Acid Converting ω-Transaminase by Using FoldX.
    Buß O; Muller D; Jager S; Rudat J; Rabe KS
    Chembiochem; 2018 Feb; 19(4):379-387. PubMed ID: 29120530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium.
    Li D; Rothballer M; Schmid M; Esperschütz J; Hartmann A
    Int J Syst Evol Microbiol; 2011 Nov; 61(Pt 11):2589-2594. PubMed ID: 21131505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids.
    Werner N; Dreyer M; Wagner W; Papon N; Rupp S; Zibek S
    Biotechnol Lett; 2017 Mar; 39(3):429-438. PubMed ID: 27904981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.