These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33127412)

  • 41. High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli.
    Gu L; Yuan H; Lv X; Li G; Cong R; Li J; Du G; Liu L
    Enzyme Microb Technol; 2020 Mar; 134():109488. PubMed ID: 32044035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Novel Quorum-Quenching
    Kusada H; Tamaki H; Kamagata Y; Hanada S; Kimura N
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455333
    [No Abstract]   [Full Text] [Related]  

  • 43. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes.
    Stolterfoht H; Schwendenwein D; Sensen CW; Rudroff F; Winkler M
    J Biotechnol; 2017 Sep; 257():222-232. PubMed ID: 28223183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemoenzymatic Production of Enantiocomplementary 2-Substituted 3-Hydroxycarboxylic Acids from L-α-Amino Acids.
    Pickl M; Marín-Valls R; Joglar J; Bujons J; Clapés P
    Adv Synth Catal; 2021 Jun; 363(11):2866-2876. PubMed ID: 34276272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective biocatalytic hydroxylation of unactivated methylene C-H bonds in cyclic alkyl substrates.
    Sarkar MR; Dasgupta S; Pyke SM; Bell SG
    Chem Commun (Camb); 2019 Apr; 55(34):5029-5032. PubMed ID: 30968888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of nitriles from synthetic wastewater by acrylonitrile utilizing bacteria.
    Wang CC; Lee CM; Chen LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(7):1767-79. PubMed ID: 15242125
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of stable 1,2-dichlorobenzene-degrading enrichments and two newly isolated degrading strains, Acidovorax sp. sk40 and Ralstonia sp. sk41.
    Cui G; Chien MF; Suto K; Inoue C
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6821-6828. PubMed ID: 28707068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge.
    Heylen K; Lebbe L; De Vos P
    Int J Syst Evol Microbiol; 2008 Jan; 58(Pt 1):73-7. PubMed ID: 18175686
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic resolution of aromatic β-amino acids by ω-transaminase.
    Bea HS; Park HJ; Lee SH; Yun H
    Chem Commun (Camb); 2011 May; 47(20):5894-6. PubMed ID: 21487615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
    Blank LM; Ebert BE; Buehler K; Bühler B
    Antioxid Redox Signal; 2010 Aug; 13(3):349-94. PubMed ID: 20059399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins.
    Beam HW; Perry JJ
    J Bacteriol; 1974 May; 118(2):394-9. PubMed ID: 4597441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium Acidovorax citrulli and novel effectors in the Acidovorax genus.
    Jiménez-Guerrero I; Pérez-Montaño F; Da Silva GM; Wagner N; Shkedy D; Zhao M; Pizarro L; Bar M; Walcott R; Sessa G; Pupko T; Burdman S
    Mol Plant Pathol; 2020 Jan; 21(1):17-37. PubMed ID: 31643123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein engineering for bioreduction of carboxylic acids.
    Tee KL; Xu JH; Wong TS
    J Biotechnol; 2019 Sep; 303():53-64. PubMed ID: 31325477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 1.37 Å crystal structure of pathogenic factor pectate lyase from Acidovorax citrulli.
    Tang Q; Liu YP; Ren ZG; Yan XX; Zhang LQ
    Proteins; 2013 Aug; 81(8):1485-90. PubMed ID: 23568384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biocatalytic racemisation of alpha-hydroxycarboxylic acids at physiological conditions.
    Glueck SM; Larissegger-Schnell B; Csar K; Kroutil W; Faber K
    Chem Commun (Camb); 2005 Apr; (14):1904-5. PubMed ID: 15795782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells.
    Ensari Y; de Almeida Santos G; Ruff AJ; Schwaneberg U
    Enzyme Microb Technol; 2020 Aug; 138():109555. PubMed ID: 32527525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct Access to Medium-Chain α,ω-Dicarboxylic Acids by Using a Baeyer-Villiger Monooxygenase of Abnormal Regioselectivity.
    Yu JM; Liu YY; Zheng YC; Li H; Zhang XY; Zheng GW; Li CX; Bai YP; Xu JH
    Chembiochem; 2018 Oct; 19(19):2049-2054. PubMed ID: 30025196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic resolution of trans-cycloalkane-1,2-diols via Steglich esterification.
    Hrdina R; Müller CE; Schreiner PR
    Chem Commun (Camb); 2010 Apr; 46(15):2689-90. PubMed ID: 20461855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov.
    Schaad NW; Postnikova E; Sechler A; Claflin LE; Vidaver AK; Jones JB; Agarkova I; Ignatov A; Dickstein E; Ramundo BA
    Syst Appl Microbiol; 2008 Dec; 31(6-8):434-46. PubMed ID: 18993005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transannular C-H functionalization of cycloalkane carboxylic acids.
    Kang G; Strassfeld DA; Sheng T; Chen CY; Yu JQ
    Nature; 2023 Jun; 618(7965):519-525. PubMed ID: 37258673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.