BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 33127470)

  • 1. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury.
    Cheng L; Sami A; Ghosh B; Urban MW; Heinsinger NM; Liang SS; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jan; 147():105153. PubMed ID: 33127470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Tyrosine Phosphatase σ Inhibitory Peptide Promotes Recovery of Diaphragm Function and Sprouting of Bulbospinal Respiratory Axons after Cervical Spinal Cord Injury.
    Urban MW; Ghosh B; Block CG; Charsar BA; Smith GM; Wright MC; Li S; Lepore AC
    J Neurotrauma; 2020 Feb; 37(3):572-579. PubMed ID: 31392919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI.
    Urban MW; Ghosh B; Strojny LR; Block CG; Blazejewski SM; Wright MC; Smith GM; Lepore AC
    Exp Neurol; 2018 May; 303():108-119. PubMed ID: 29453976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury.
    Michel-Flutot P; Cheng L; Thomas SJ; Lisi B; Schwartz H; Lam S; Lyttle M; Jaffe DA; Smith G; Li S; Wright MC; Lepore AC
    Exp Neurol; 2024 Aug; 378():114816. PubMed ID: 38789023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury.
    Charsar BA; Brinton MA; Locke K; Chen AY; Ghosh B; Urban MW; Komaravolu S; Krishnamurthy K; Smit R; Pasinelli P; Wright MC; Smith GM; Lepore AC
    FASEB J; 2019 Dec; 33(12):13775-13793. PubMed ID: 31577916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory axon regeneration in the chronically injured spinal cord.
    Cheng L; Sami A; Ghosh B; Goudsward HJ; Smith GM; Wright MC; Li S; Lepore AC
    Neurobiol Dis; 2021 Jul; 155():105389. PubMed ID: 33975016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury.
    Goulão M; Ghosh B; Urban MW; Sahu M; Mercogliano C; Charsar BA; Komaravolu S; Block CG; Smith GM; Wright MC; Lepore AC
    Glia; 2019 Mar; 67(3):452-466. PubMed ID: 30548313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury.
    Urban MW; Ghosh B; Block CG; Strojny LR; Charsar BA; Goulão M; Komaravolu SS; Smith GM; Wright MC; Li S; Lepore AC
    eNeuro; 2019; 6(5):. PubMed ID: 31427403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury.
    Michel-Flutot P; Cheng L; Thomas SJ; Lisi B; Schwartz H; Lam S; Lyttle M; Jaffe DA; Smith G; Li S; Wright MC; Lepore AC
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection.
    Boulenguez P; Gauthier P; Kastner A
    Brain Res; 2007 May; 1148():96-104. PubMed ID: 17379194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function.
    Ghosh B; Wang Z; Nong J; Urban MW; Zhang Z; Trovillion VA; Wright MC; Zhong Y; Lepore AC
    J Neurosci; 2018 Jun; 38(26):5982-5995. PubMed ID: 29891731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early phrenic motor neuron loss and transient respiratory abnormalities after unilateral cervical spinal cord contusion.
    Nicaise C; Frank DM; Hala TJ; Authelet M; Pochet R; Adriaens D; Brion JP; Wright MC; Lepore AC
    J Neurotrauma; 2013 Jun; 30(12):1092-9. PubMed ID: 23534670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury.
    Dyck S; Kataria H; Alizadeh A; Santhosh KT; Lang B; Silver J; Karimi-Abdolrezaee S
    J Neuroinflammation; 2018 Mar; 15(1):90. PubMed ID: 29558941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury.
    Xu B; Park D; Ohtake Y; Li H; Hayat U; Liu J; Selzer ME; Longo FM; Li S
    Neurobiol Dis; 2015 Jan; 73():36-48. PubMed ID: 25220840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaphragmatic recovery in rats with cervical spinal cord injury induced by a theophylline nanoconjugate: Challenges for clinical use.
    Liu F; Zhang Y; Schafer J; Mao G; Goshgarian HG
    J Spinal Cord Med; 2019 Nov; 42(6):725-734. PubMed ID: 30843479
    [No Abstract]   [Full Text] [Related]  

  • 16. Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways.
    Buttry JL; Goshgarian HG
    Exp Neurol; 2014 Nov; 261():440-50. PubMed ID: 25086272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supraspinal respiratory plasticity following acute cervical spinal cord injury.
    Bezdudnaya T; Marchenko V; Zholudeva LV; Spruance VM; Lane MA
    Exp Neurol; 2017 Jul; 293():181-189. PubMed ID: 28433644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressing CSPG/LAR/PTPσ Axis Facilitates Neuronal Replacement and Synaptogenesis by Human Neural Precursor Grafts and Improves Recovery after Spinal Cord Injury.
    Hosseini SM; Alizadeh A; Shahsavani N; Chopek J; Ahlfors JE; Karimi-Abdolrezaee S
    J Neurosci; 2022 Apr; 42(15):3096-3121. PubMed ID: 35256527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity.
    Tom VJ; Kadakia R; Santi L; Houlé JD
    J Neurotrauma; 2009 Dec; 26(12):2323-33. PubMed ID: 19659409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.