BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33127672)

  • 1. Bioinspired metagel with broadband tunable impedance matching.
    Dong E; Song Z; Zhang Y; Ghaffari Mosanenzadeh S; He Q; Zhao X; Fang NX
    Sci Adv; 2020 Oct; 6(44):. PubMed ID: 33127672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves.
    Fleury R; Alù A
    J Acoust Soc Am; 2014 Dec; 136(6):2935. PubMed ID: 25480042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Broadband Matching Method for Capacitive Micromachined Ultrasonic Transducers Based on PDMS/TiO
    Gao B; Zhang S; He C; Wang R; Yang Y; Jia L; Wang Z; Wu Y; Hu S; Zhang W
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband metamaterial for nonresonant matching of acoustic waves.
    D'Aguanno G; Le KQ; Trimm R; Alù A; Mattiucci N; Mathias AD; Aközbek N; Bloemer MJ
    Sci Rep; 2012; 2():340. PubMed ID: 22468227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable high acoustic impedance alumina epoxy composite matching for high frequency ultrasound transducer.
    Wong CM; Chan SF; Wu WC; Suen CH; Yau HM; Wang DY; Li S; Dai JY
    Ultrasonics; 2021 Sep; 116():106506. PubMed ID: 34274741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):299-306. PubMed ID: 12322878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical modeling and validation of porpoises' directional emission via hybrid metamaterials.
    Dong E; Zhang Y; Song Z; Zhang T; Cai C; Fang NX
    Natl Sci Rev; 2019 Oct; 6(5):921-928. PubMed ID: 34691953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Negative Capacitance-Based Broadband Impedance Matching for CMUTs.
    Rezvanitabar A; Arkan EF; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):3042-3052. PubMed ID: 33983883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Ultrasound Transmission through Skull Using Flexible Matching Layer with Gradual Acoustic Impedance.
    Chen T; Chen J; Yi Z; Zheng C; Zhou L; Wu Y; Cai F; Qin J; Hong Z; Huang Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55510-55517. PubMed ID: 37991837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Metasurfaces for Perfect Transmission and Customized Manipulation of Sound Across Water-Air Interface.
    Zhou HT; Zhang SC; Zhu T; Tian YZ; Wang YF; Wang YS
    Adv Sci (Weinh); 2023 Jul; 10(19):e2207181. PubMed ID: 37078801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A PDMS-based broadband acoustic impedance matched material for underwater applications.
    Guillermic RM; Lanoy M; Strybulevych A; Page JH
    Ultrasonics; 2019 Apr; 94():152-157. PubMed ID: 30322641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater metamaterial absorber with impedance-matched composite.
    Qu S; Gao N; Tinel A; Morvan B; Romero-García V; Groby JP; Sheng P
    Sci Adv; 2022 May; 8(20):eabm4206. PubMed ID: 35584217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental demonstration of broadband impedance matching using coupled electromagnetic resonators.
    Lv X; Li C; Que Y; Li G; Hou X; Li Y; Li L; Sun Y; Guo Y
    Sci Rep; 2020 May; 10(1):7437. PubMed ID: 32366895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband impedance modulation via non-local acoustic metamaterials.
    Zhou Z; Huang S; Li D; Zhu J; Li Y
    Natl Sci Rev; 2022 Aug; 9(8):nwab171. PubMed ID: 36072507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary broadband impedance matching in highly dispersive media - the white light cavity approach.
    Scheuer J; Filonov D; Vosheva T; Ginzburg P
    Opt Express; 2022 Feb; 30(4):5192-5199. PubMed ID: 35209488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-IR Light-Tunable Omnidirectional Broadband Terahertz Wave Antireflection Based on a PEDOT:PSS/Graphene Hybrid Coating.
    Lai W; Liu G; Gou H; Wu H; Rahimi-Iman A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43868-43876. PubMed ID: 36106485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice.
    Jin Y; Zubov Y; Yang T; Choi TY; Krokhin A; Neogi A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.